

The elephant symbolises a big download,

commonly referred to as an ”elephant flow”,
which blocks the link with its bulk so every-

thing has to wait behind it.

The mice are smaller flows, such as web
pages, that take up little space but should be

able to move freely. Through better queue

management, the mice are guided around

the elephant, so they don’t have to wait;

and interactivity is restored.

The penguin is Tux, the Linux mascot, who

stands at the bottleneck and directs traffic
onto the right path.

Bufferbloat and Beyond
Removing Performance Barriers in Real-World Networks

Toke Høiland-Jørgensen

Toke H
øiland-Jørgensen | B

ufferbloat and B
eyond | 2018:42

Bufferbloat and Beyond

The topic of this thesis is the performance of computer networks in general, and
the internet in particular. While network performance has generally improved
with time, over the last several years we have seen examples of performance
barriers limiting network performance. In this work we explore such performance
barriers and look for solutions.

Our exploration takes us through three areas where performance barriers are
found: The bufferbloat phenomenon of excessive queueing latency, the
performance anomaly in WiFi networks and related airtime resource sharing
problems, and the problem of implementing high-speed programmable packet
processing in an operating system. In each of these areas we present solutions
that significantly advance the state of the art.

The work in this thesis spans all three aspects of the field of computing, namely
mathematics, engineering and science. We perform mathematical analysis of
algorithms, engineer solutions to the problems we explore, and perform scientific
studies of the network itself. All our solutions are implemented as open source
software, including both contributions to the upstream Linux kernel, as well as
the Flent test tool, developed to support the measurements performed in the rest
of the thesis.

DOCTORAL THESIS | Karlstad University Studies | 2018:42

Faculty of Health, Science and Technology

Computer Science

DOCTORAL THESIS | Karlstad University Studies | 2018:42

ISSN 1403-8099

ISBN 978-91-7063-973-9 (pdf)

ISBN 978-91-7063-878-7 (Print)

DOCTORAL THESIS | Karlstad University Studies | 2018:42

Bufferbloat and Beyond
Removing Performance Barriers in Real-World Networks

Toke Høiland-Jørgensen

Print: Universitetstryckeriet, Karlstad 2018

Distribution:
Karlstad University
Faculty of Health, Science and Technology
Department of Mathematics and Computer Science
SE-651 88 Karlstad, Sweden
+46 54 700 10 00

© The author

ISSN 1403-8099

urn:nbn:se:kau:diva-69416

Karlstad University Studies | 2018:42

DOCTORAL THESIS

Toke Høiland-Jørgensen

Bufferbloat and Beyond - Removing Performance Barriers in Real-World Networks

WWW.KAU.SE

ISBN 978-91-7063-973-9 (pdf)

Revised version in which printing errors have been corrected

ISBN 978-91-7063-878-7 (Print)

iii

Bufferbloat and Beyond: Removing Performance
Barriers in Real-World Networks
Toke Høiland-Jørgensen

Department of Mathematics and Computer Science
Karlstad University

Abstract
The topic of this thesis is the performance of computer networks. While net-
work performance has generally improved with time, over the last several years
we have seen examples of performance barriers limiting network performance.
In this work we explore such performance barriers and look for solutions.

The problem of excess persistent queueing latency, known as bufferbloat,
serves as our starting point; we examine its prevalence in the public internet,
and evaluate solutions for better queue management, and explore how to
improve on existing solutions to make them easier to deploy.

Since an increasing number of clients access the internet through WiFi
networks, examining WiFi performance is a natural next step. Here we also
look at bufferbloat, as well as the so-called performance anomaly, where stations
with poor signal strengths can severely impact the performance of the whole
network. We present solutions for both of these issues, and additionally
design a mechanism for assigning policies for distributing airtime between
devices on a WiFi network. We also analyse the “TCP Small Queues” latency
minimisation technique implemented in the Linux TCP stack and optimise its
performance over WiFi networks.

Finally, we explore how high-speed network processing can be enabled in
software, by looking at the eXpress Data Path framework that has been gradu-
ally implemented in the Linux kernel as a way to enable high-performance
programmable packet processing directly in the operating system’s networking
stack.

A special focus of this work has been to ensure that the results are car-
ried forward to the implementation stage, which is achieved by releasing
implementations as open source software. This includes parts that have been
accepted into the Linux kernel, as well as a separate open source measurement
tool, called Flent, which is used to perform most of the experiments presented
in this thesis, and also used widely in the bufferbloat community.

Keywords: Bufferbloat, AQM, WiFi, XDP, TSQ, Flent, network measure-
ment, performance evaluation, fairness, queueing, programmable packet pro-
cessing

v

Acknowledgements
The journey is almost over. It has been challenging, exciting, annoying,
incredible and above all interesting. And it would not have been the same
without the incredible people who have accompanied and supported me along
the way, all of whom deserve a huge thank you.

First of all, thank you to the many collaborators I have had these past
years. Foremost among them of course my advisors, Anna Brunström and
Per Hurtig, who have always been ready to offer competent feedback, ideas,
suggestions and support; thank you so much to both of you! A special thanks
also to Dave Täht, with whom I have collaborated extensively, on both the
papers we have co-authored, and a list of other projects too long to reproduce
here. Dave was also among the people who initially introduced me to the
concept of bufferbloat, and he and Jim Gettys both played major roles in
setting me on the right path, towards the work represented in this thesis; for
this I am exceedingly grateful. Thank you, as well, to Jesper Brouer for his
collaboration, and for convincing me to continue the work with Linux and
open source post-thesis; and to Fanny Reinholtz for designing the awesome
dust jacket for the printed version of this thesis. And finally, thank you to
my other co-authors, and all the members of the Bufferbloat, make-wifi-fast,
Linux and OpenWrt communities that I have collaborated with over the last
six years.

A journey such as this would not have been possible without the friends
who have shared my joys and sorrows along the way. Thank you to my
colleagues at the university, my old friends in Denmark, and my new(er)
friends in Karlstad. Thank you to Lea, Stefan, Stina and Leonardo for climbing,
skiing and everything else. To Martin, Daniel, Alex and Miriam for hanging
out and having fun. To Timo, Leo and Ricardo for bringing the band (back)
together. To the innebandy team (in its various incarnations) for showing me
how much fun it can be to chase a ball around with a stick. And to the dwarves,
and to Sunni, Morten, Sidsel and Torben for keeping in touch through my
five-year Swedish exile.

Last, but certainly not least, thank you so much to my wonderful loving
family. Thank you mum and dad for helping me get to this point, for always
being there for me, and for your love and respect. And thank you Sascha, for
coming with me to Sweden and brightening up my days.

Karlstad, October 2018 Toke Høiland-Jørgensen

Well then. A year and a half later, I find myself preparing a second print run;
who would have thought? Many thanks to Dave Täht for insisting on this, and
to Karlstad University for agreeing to print another batch, with all that entails.

Roskilde, April 2020 Toke Høiland-Jørgensen

vii

List of appended papers
I. Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig and Anna Brun-

strom. Measuring Latency Variation in the Internet. ACM CoNEXT
’16, December 12–15, 2016, Irvine, CA, USA.

II. Toke Høiland-Jørgensen, Per Hurtig and Anna Brunstrom. The Good,
the Bad and the WiFi: Modern AQMs in a Residential Setting. Computer
Networks, vol 89, pg 90–106, October 2015.

III. Toke Høiland-Jørgensen. Analysing the Latency of Sparse Flows in
the FQ-CoDel Queue Management Algorithm. IEEE Communication
Letters, October 2018.

IV. Toke Høiland-Jørgensen, Dave Täht and Jonathan Morton. Piece of
CAKE: A Comprehensive Queue Management Solution for Home
Gateways. IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN 2018), 25–27 June 2018, Washington, DC.

V. Toke Høiland-Jørgensen, Michal Kazior, Dave Täht, Per Hurtig and
Anna Brunstrom. Ending the Anomaly: Achieving Low Latency and
Airtime Fairness in WiFi. 2017 USENIX Annual Technical Conference
(USENIX ATC 17), July 12–14 2017, Santa Clara, CA.

VI. Toke Høiland-Jørgensen, Per Hurtig and Anna Brunstrom. PoliFi: Air-
time Policy Enforcement for WiFi. Under Submission.

VII. Carlo Augusto Grazia, Natale Patriciello, Toke Høiland-Jørgensen, Mar-
tin Klapez and Maurizio Casoni. Adapting TCP Small Queues for IEEE
802.11 Networks. The 29th Annual IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (IEEE PIMRC
2018), 9-12 September 2018, Bologna, Italy.

VIII. Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern and David Miller. The
eXpress Data Path: Fast Programmable Packet Processing in the Op-
erating System Kernel. CoNEXT ’18: International Conference on
emerging Networking EXperiments and Technologies, December 4–7,
2018, Heraklion, Greece.

IX. Toke Høiland-Jørgensen, Carlo Augusto Grazia, Per Hurtig and Anna
Brunstrom. Flent: The FLExible Network Tester. 11th EAI Interna-
tional Conference on Performance Evaluation Methodologies and Tools
(VALUETOOLS 2017), December 5–7, 2017, Venice, Italy.

Comments on my participation
For all papers, the ideas have been developed in cooperation with my co-
authors. However, I have done the bulk of all writing, implementation,
experimental work and evaluation, with the following exceptions:

viii

• In Paper I, the data analysis and most of the text describing the access
network dataset was done by Bengt Ahlgren.

• In Paper IV, most of the initial implementation was done by Jonathan
Morton. I have been responsible for the upstream submission to the
Linux kernel, and have made major revisions in the course of this
process. The design of CAKE has been heavily community-driven, with
many members of the bufferbloat community taking part by testing and
requesting features.

• In Paper V, a large part of the MAC layer queue rework implementation
was done by Michal Kazior, and the 30 station tests were performed by
Sven Eckelmann.

• In Paper VII, I was responsible for the ath9k and ath10k testing, and for
submitting the final patch for inclusion in the upstream Linux kernel.
The rest of the experiments and most of the writing was done by my
co-authors.

• In Paper VIII, the design and implementation of XDP has been an
ongoing process in the Linux development community, with most of
the work being done by my co-authors. I have been responsible for
designing and performing the experiments in the paper, together with
Jesper Danggaard Brouer. I have also been responsible for writing and
structuring the paper.

• In Paper IX the over-the-internet test run was done by Carlo Augusto
Grazia.

Other relevant publications
The following is a list of the other relevant publications I have co-authored
over the course of my PhD work, and how they relate to the work presented
in this thesis:

• Jesper Dangaard Brouer and Toke Høiland-Jørgensen. “XDP - challenges
and future work”. Linux Plumbers Conference 2018 Networking Track,
Vancouver, Canada, November 2018. Here we present parts of the work
described in Paper VIII.

• Toke Høiland-Jørgensen et al. “The Flow Queue CoDel Packet Sched-
uler and Active Queue Management Algorithm”. RFC 8290 (Experi-
mental), January 2018. This is the standards document describing the
FQ-CoDel algorithm also treated in Paper III.

• Toke Høiland-Jørgensen. “On The Bleeding Edge: Debloating Internet
Access Networks”. Licentiate Thesis, Karlstad University, November
2016. This contains parts of the work presented in this thesis; specifically,
Papers I, II and earlier versions of Papers V and IX as well as parts of the
introductory summary.

ix

• Toke Høiland-Jørgensen. “Bufferbloat mitigation in the WiFi stack -
status and next steps”. NetDev 2.2, Seoul, South Korea, November 2016.
This includes early versions of the work presented in Papers V and VI.

• Toke Høiland-Jørgensen. “Flent: The FLExible Network Tester”. The
11th Swedish National Computer Networking Workshop (SNCNW),
Karlstad, Sweden, May 28–29, 2015. This is an earlier version of Pa-
per IX.

xi

Contents

Introductory Summary 1

1 Introduction 3

2 Research objective 4

3 Background 5
3.1 Bufferbloat and its mitigation 5
3.2 The 802.11 WiFi standards 6
3.3 High-performance software packet processing 9

4 Research questions 11

5 Contributions 13

6 Research method 16

7 Summary of appended papers 18

8 Conclusions and future work 22

Paper I:
Measuring Latency Variation in the Internet 31

1 Introduction 31

2 Datasets and methodology 32
2.1 The M-Lab NDT data . 33
2.2 The access aggregation link data 34
2.3 Sources of latency variation 36

3 Latency variation over time and geography 36
3.1 Geographic differences . 36
3.2 Development over time . 38
3.3 Different measures of latency span 38

4 Latency variation in the access network 38

5 Examining queueing latency 40
5.1 Latency reductions after a drop 40
5.2 Delay correlated with load 42
5.3 Discussion . 44

xii

6 Related work 44
6.1 Large-scale active measurements 44
6.2 Targeted active measurements 45
6.3 Passive measurements . 45

7 Conclusions 46

8 Acknowledgements 46

Paper II:
The Good, the Bad and the WiFi: Modern AQMs in a
Residential Setting 51

1 Introduction 51

2 Related work 53

3 Experimental methodology 55

4 Tested algorithms 56
4.1 pfifo_fast . 58
4.2 ARED . 58
4.3 PIE . 58
4.4 CoDel . 58
4.5 SFQ . 59
4.6 fq_codel . 59
4.7 fq_nocodel . 59

5 The Good: steady-state behaviour 60
5.1 The Real-time Response Under Load test 60
5.2 VoIP test . 63
5.3 Web test . 65
5.4 Discussion . 69

6 The Bad: fairness and transient behaviour 69
6.1 Inter-flow fairness . 69
6.2 Transient behaviour . 72
6.3 Discussion . 73

7 The WiFi: adding a wireless link 73
7.1 The RRUL test . 75
7.2 VoIP traffic . 76
7.3 Web results . 77
7.4 Discussion . 77

8 Conclusions and future work 77

xiii

Paper III:
Analysing the Latency of Sparse Flows in the FQ-CoDel
Queue Management Algorithm 87

1 Introduction 87

2 Related work 88

3 The sparse flow optimisation 89

4 Analytical framework 89
4.1 One sparse flow . 89
4.2 Multiple sparse flows . 91
4.3 Impact on bulk flows . 92
4.4 Impact of changing the quantum 92

5 Real-world examples 92

6 Conclusion 95

7 Acknowledgements 95

Paper IV:
Piece of CAKE: A Comprehensive Queue Management
Solution for Home Gateways 99

1 Introduction 99

2 Background and Related Work 100
2.1 Bandwidth Shaping . 101
2.2 Queue Management . 101
2.3 DiffServ Handling . 102
2.4 TCP ACK Filtering . 102

3 The Design of CAKE 103
3.1 Bandwidth Shaping . 103
3.2 Flow Isolation and Hashing 104
3.3 DiffServ handling . 105
3.4 ACK filtering . 106

4 Performance Evaluation 107
4.1 Host Isolation . 107
4.2 DiffServ Handling . 109
4.3 ACK Filtering . 109

5 Conclusions 110

xiv

Acknowledgements 111

Paper V:
Ending the Anomaly: Achieving Low Latency and Air-
time Fairness in WiFi 117

1 Introduction 117

2 Background 118
2.1 Bufferbloat in the context of WiFi 118
2.2 Airtime fairness . 121

3 Our solution 123
3.1 A bloat-free queueing structure for 802.11 123
3.2 Airtime fairness scheduling 125
3.3 Implementation . 128

4 Evaluation 129
4.1 Validation of effects . 129
4.2 Effects on real-world application performance 135
4.3 Summary . 138

5 Related work 139

6 Conclusion 140

7 Acknowledgements 140

Paper VI:
PoliFi: Airtime Policy Enforcement for WiFi 147

1 Introduction 147

2 Related work 148

3 The PoliFi Design 149
3.1 Userspace Policy Daemon 150
3.2 Weighted Airtime DRR . 152
3.3 Kernel Airtime Scheduler 154

4 Evaluation 154
4.1 Steady state measurements 155
4.2 Dynamic measurements . 157
4.3 DASH Traffic Test . 159

5 Conclusion 159

xv

Paper VII:
Adapting TCP Small Queues for IEEE 802.11 Networks 163

1 Introduction 163

2 TCP Small Queues in a Nutshell 164

3 Controlled TSQ 167

4 Testbed 167

5 Results 171

6 Conclusions 176

Paper VIII:
The eXpress Data Path: Fast Programmable Packet Pro-
cessing in the Operating System Kernel 181

1 Introduction 181

2 Related work 183

3 The design of XDP 185
3.1 The XDP Driver Hook . 186
3.2 The eBPF Virtual Machine 189
3.3 BPF Maps . 190
3.4 The eBPF Verifier . 191
3.5 Example XDP program . 192
3.6 Summary . 194

4 Performance evaluation 194
4.1 Packet Drop Performance 196
4.2 CPU Usage . 197
4.3 Packet Forwarding Performance 198
4.4 Discussion . 199

5 Real-world use cases 200
5.1 Software Routing . 201
5.2 Inline DoS Mitigation . 202
5.3 Load Balancing . 203

6 Future directions of XDP 204
6.1 Limitations on eBPF programs 204
6.2 User Experience and Debugging 205
6.3 Driver Support . 205
6.4 Performance Improvements 205

xvi

6.5 QoS and Rate Transitions 206
6.6 Accelerating Transport Protocols 206
6.7 Zero-copy to userspace . 206
6.8 XDP as a building block . 207

7 Conclusion 207

Paper IX:
Flent: The FLExible Network Tester 215

1 Introduction 215

2 Experimental challenges 216
2.1 Reproducing experiments 216
2.2 Testbed configuration and test automation 217
2.3 Storing and analysing measurement data 217

3 How Flent helps 217
3.1 Reproducing experiments 218
3.2 Configuration and automation 218
3.3 Storing and analysing measurement data 219

4 Showcasing Flent: A look at the BBR congestion control 219
4.1 Experimental setup . 220
4.2 Testbed results . 221
4.3 Public internet results . 224

5 Related work 227

6 Conclusions and Future Work 227

Introductory Summary

“To Infinity. . . And Beyond!”

Buzz Lightyear, Toy Story

3

1 Introduction
Internet usage is steadily increasing and our world is becoming increasingly
connected. At the same time, new applications place ever higher performance
requirements on the network, which must support both high bandwidth and
low latency. Latency in particular has become more important as applications
turn more interactive, and emerging applications such as augmented reality and
ubiquitous video conversations are only going to make this more important.

While network performance has increased significantly, and continues to
do so, over the last several years we have seen examples of performance barriers
limiting the network performance. One example of this is the bufferbloat
phenomenon, which is a term coined to describe the effect that occurs when
a network bottleneck is congested and large buffers fill up and do not drain,
thus inducing a persistent queueing delay that can be much larger than the
path round-trip time [1, 2]. Excessive queueing delay is by no means a new
phenomenon, but even so, bufferbloat has been found to be widespread in
deployed systems, thus forming a practical performance barrier.

In this thesis we will explore such performance barriers, and look for ways
to remove or mitigate them. Bufferbloat serves as our starting point. An
online community has formed around the need to develop technical solutions
to mitigate bufferbloat,1 and the work in this thesis should be seen in the
context of this community effort, which I have taken part in over the last
several years.

The bufferbloat effort has been focused on last-mile access networks, where
bufferbloat has been both extremely prevalent, but also fixable due to cheap
home routers that can have their firmware replaced. Replacing the router firm-
ware makes it possible to apply state of the art queue management algorithms
on the bottleneck link connecting the home to the internet. The efficacy of
such queue management solutions is one of the topics we examine in this
work.

As we improve the access link itself, and as bandwidths increase, the new
bottleneck link, and source of performance barriers, becomes the WiFi link.
Thus, exploring the performance of WiFi networks is a natural extension of
the bufferbloat work. It turns out that WiFi network performance suffers not
only from bufferbloat, but also from the so-called performance anomaly, where
stations with poor signal strengths can severely impact the performance of the
whole network. We explore a range of performance issues with WiFi networks
and present solutions for them.

Both the solutions for bufferbloat and the improvements to WiFi networks
are characterised by being enabled by malleable open source software imple-
mentations which can be inspected and improved upon. This has been possible
in the relatively low-speed home network devices where CPUs can keep up
with the packet rate. However, for truly high-speed networking (going into
tens and hundreds of gigabits per second), programmable packet processing
has been out of reach until quite recently. Now, not only is special-purpose

1See https://www.bufferbloat.net.

https://www.bufferbloat.net

4

networking hardware gaining programmability, general-purpose computers
are also beginning to reach a level of performance where they can realistically
process packets at the 100-Gbps level. The software architecture of common
operating systems forms a bottleneck when trying to achieve such speeds,
which is the last barrier that we explore solutions to in this work. Specifically,
we look at the eXpress Data Path framework that has been gradually imple-
mented in the Linux kernel over the last several releases, which we describe
and evaluate in detail.

This thesis explores the performance barriers mentioned above, in the form
of the nine appended papers. Before we get this far, though, we will first set the
stage and present some context. This is the role of this introductory summary,
the rest of which is structured as follows: Section 2 (below) outlines the main
research objective we are pursuing in this thesis. Section 3 contains a short
background primer on the subject areas we touch upon, and summarises related
work. Section 4 outlines our research questions and Section 5 outlines the
main contributions of this thesis. Section 6 relates the work to the traditions
of the field of computer science and Section 7 presents a short summary of the
appended papers. Finally, Section 8 concludes and outlines future work.

2 Research objective
The overarching research objective of this work is to improve network per-
formance by exploring specific performance barriers in modern real-world
networks, and developing ways of removing them. We use the bufferbloat
phenomenon as a starting point for this exploration and continue into several
related areas. In particular, we are interested in the following:

1. Improving the understanding of the specific manifestations of bufferbloat
and of its prevalence in the internet.

2. Evaluating the efficacy of existing solutions for bufferbloat, and identify-
ing ways to optimise them for deployment in edge networks.

3. Addressing bufferbloat in WiFi networks and exploring other related
performance problems and their solutions.

4. Exploring solutions for removing the performance barrier posed by the
operating system in software packet processing systems.

5

3 Background
This section provides some background on the subject areas of this thesis.
Section 3.1 outlines the previous work on bufferbloat assessment and mitiga-
tion; Section 3.2 gives an overview of the operation of 802.11 WiFi networks,
and outlines previous work on network performance in the WiFi space; and
Section 3.3 outlines previous work on high-performance packet processing in
software.

3.1 Bufferbloat and its mitigation
While bufferbloat is straightforward to demonstrate in a lab setting, there
has been some argument over how widespread it is in the real world. Due
to its distributed nature, no one has a global view of the internet, so one is
limited to analysing data from a subset of the network. This can be done
either by generating measurement traffic to look for specific behaviour (active
measurements), or by capturing traffic at a specific point in the network and
trying to infer path characteristics from that (passive measurements).

Several studies based on both active and passive measurements have been
performed, with various focus areas. Examples of large scale studies that
include latency measurements are [3], which uses 130,000 tests from the
Netalyzr test suite to measure queueing latency; [4], which uses data from
the BISMark and SamKnows measurement platforms to measure baseline and
under-load latency; and [5], which also uses BISMark data (as well as other
sources) to measure broadband performance in South Africa. Smaller scale
active measurements are described in [6], where active probing of residential
hosts is used to measure network connections; in [7], which is specifically
targeted at assessing queueing latency; and in [8, 9], both of which use clients
under the experimenters’ control to measure bufferbloat in cellular networks.
Fewer passive measurement studies specifically look at latency, but a few
examples can be found, e.g. [10, 11], both of which employ captures taken at a
network edge for their analysis.

Several of the studies mentioned above find examples of latency increases
over the baseline, but few of them specifically discuss bufferbloat as a possible
cause. In Paper I we seek to contribute to the discussion, by exploring specific-
ally how latency varies over time in the internet, and how much of this can be
attributed to bufferbloat, with the data available.

Turning to bufferbloat mitigation procedures, the problem of unmanaged
FIFO queues and their impact on latency has been known for a long time,
and the introduction of Active Queue Management (AQM) has been known
to be an effective way of reducing delays, if deployed correctly. The most
well-known classical AQM algorithm, Random Early Detection (RED) [12],
is more than two decades old, and its successor, Adaptive RED (ARED) [13],
is over fifteen. Package scheduling algorithms, which can also help mitigate
queueing latency, have even older well-known examples, such as the Stochastic

6

Fairness Queueing (SFQ) algorithm [14], and other fairness queueing al-
gorithms that schedule individual flows to ensure fairness between them.

Many other algorithms have been proposed over the years [15], however
few have seen widespread deployment in the internet. This is mostly due to
the difficulty of tuning the algorithms, and the adverse effect they can have on
performance if configured incorrectly [16]. And so, for many years no easily
deployable queue management techniques were readily available.

As the bufferbloat issue started receiving increased attention, however,
we started seeing a resurgence of interest in developing algorithms that can
effectively control queues without requiring extensive tuning. And so, a
number of new algorithms appeared: Controlled Delay (CoDel) [17] and
Proportional Integral controller Enhanced (PIE) [18] are both new AQM
algorithms, while FQ-CoDel [19] combines the CoDel AQM with a fairness
queueing scheme and an optimisation for improving the latency of “sparse”
flows (i.e., flows that don’t use a lot of bandwidth). These algorithms are the
focus of the evaluation presented in Paper II.

To supplement the experimental evaluation of different queueing algorithms,
an analytical approach can be useful to explore specific performance character-
istics of an algorithm. There have been examples of this, such as that performed
for the Shortest Queue First (SQF) algorithm by its authors in [20], or for the
Quick Fair Queueing (QFQ) algorithm in [21]. Another example of such an
analytical approach is the analysis of the number of active flows in a fairness
queueing system that is provided in [22]. However, no such analysis has
been performed for the new queue management algorithms discussed above.
Remedying this is the subject of Paper III.

While effective algorithms for controlling bufferbloat are certainly ne-
cessary to solve the problem, they are not themselves sufficient. A queue
management algorithm is only effective if it is in control of the bottleneck
queue. This can be achieved by eliminating queues in lower layers, such as has
been achieved in Linux for Ethernet drivers [23]. If this is not possible, the
bottleneck queue can be moved through the use of a bandwidth shaper. The
most common way to do this is by a token bucket-based shaper (e.g., [24]), or
by a rate-based shaper (e.g., [25]). Integrating bandwidth shaping with a queue
management algorithm complicates deployment, which can be a barrier to
adoption. Exploring how to improve on this situation is the topic of Paper IV.

3.2 The 802.11 WiFi standards
The IEEE 802.11 standards [26] are a series of documents that describe the
physical and MAC layers of the wireless network protocol that is commonly
known as WiFi. The protocol acts like a virtual Ethernet link, but because
the radio waves are propagating through a shared medium, there are several
important differences in how the protocol operates. In this section, we sum-
marise the main operational principles of the 802.11 WiFi MAC. We omit the
physical layer and focus on the 802.11n revision of the specification, which
is what we have used in Paper V and Paper VI. The newer 802.11ac revision

7

mainly differs at the physical layer, and in some constants (such as the max
aggregation size) at the MAC layer. The overall operational principles are
almost identical between 802.11n and 802.11ac.

When a node in a WiFi network (or “station”, as non-access point nodes
are typically called) has data to send, it will first attempt to determine whether
or not the channel is free, by listening for other transmissions. If it determines
that no other devices are currently transmitting, it will wait a random amount
of time (in the order of several microseconds), and then begin transmitting its
data frame. After transmission has completed, it will wait for the receiving
device to acknowledge the transmission. If no acknowledgement is heard,
the sender will assume that a collision occurred (i.e., that another sender
transmitted at the same time and the transmissions interfered with each other
and were lost), and so will initiate another, longer, random wait period, before
the procedure is repeated. This mechanism of arbitration for the opportunity
to send is known as the 802.11 Distributed Coordination Function (DCF).
The standard additionally specifies several possible transmission rates (with
corresponding physical encodings of the data), and leaves it up to the devices to
pick the best rate for a given transmission opportunity, based on the observed
signal-to-noise ratio at the time of transmission.

The main advantage of the DCF is that it does not require a central
coordinator in the network. However, this comes at a cost: The random
back-off periods can lead to inefficiency in the network (i.e., periods of time
in which the channel is entirely idle). To limit the overhead of the DCF,
aggregation has been introduced into the MAC protocol, allowing several
data packets to be sent at once when a device gets a chance to transmit. The
standard specifies a maximum size and a maximum transmission time for
aggregates, but not how devices should build aggregates. From a queueing
latency perspective, however, it is clear that some amount of queueing is
necessary in order to have enough packets ready to build a reasonably sized
aggregate when given a chance to transmit. The introduction of aggregation
also makes the transmission bursty (there will be periods of no data being
transmitted, followed by short bursts of several packets when an aggregate
is formed). This introduces its own challenges for a low-latency queueing
structure, as we will see in Paper V.

Another fundamental property of the DCF is that it gives each device on
the network the same probability of winning the contention for the medium,
and thus being able to transmit. However, this is independent of the time each
device spends transmitting when it gets a chance. Since the transmission rate
can vary over a large interval in the same network, one station transmitting at
a low rate can take up a large fraction of the total transmission time, and so
effectively limit the throughput of all stations in the network, which hurts the
aggregate efficiency of the network as a whole. This phenomenon is known as
the 802.11 performance anomaly [27].

The final property of WiFi networks worth mentioning here is the Quality
of Service (QoS) standards defined by the 802.11e document in the 802.11

8

standards series. This specifies that a station can transmit data in different prior-
ity tiers depending on their QoS markings. There are four QoS levels, labelled
(in decreasing priority order) as Voice, Video, Best Effort and Background.
The standard specifies different constants for the DCF for each QoS level, giv-
ing the higher priority levels a higher probability of winning the contention
for the transmission medium. The standard also specifies different aggregation
size limits on the different QoS levels, which in theory prevents abuse by trad-
ing higher contention win probability for lower maximum throughput (due to
the lower aggregation). From a latency perspective, the QoS mechanism can
in theory be a big win, but unfortunately there are no agreed-upon standards
for how to assign QoS levels to different traffic flows, and implementations
tend to be bug-ridden, significantly lowering the usefulness of this feature of
the standard.

While there is nothing fundamental in WiFi stating that queues cannot
be managed to avoid excess queueing latency, there is little in the literature
that deals with this aspect of the problem. A few examples of work that
do treat queueing latency in WiFi networks are [28], which features a WiFi
component in a larger evaluation of bufferbloat mitigation techniques; [29],
which looks at buffer sizing issues in WiFi networks; and [30], which touches
upon congestion in the WiFi hop and uses different queueing schemes to
address it, but in the context of a centralised solution that also seeks to control
fairness in the whole network. However, none of these studies provides a
solution at the WiFi hop itself.

The performance anomaly, on the other hand, has been studied extensively,
and several solutions have been proposed, falling roughly into three categor-
ies: Those that modify the back-off parameters of WiFi nodes to achieve
fairness [31–34], those that change the transmission size [35–37], and those
that employ a scheduler at the access point [38, 39]. However, most of the
solutions have never made it to actual implementations, whether because the
implementation has never left the simulation stage, or because the approach
has other tradeoffs that make them impractical to implement. This means
that the performance anomaly is still very much present today, as we show in
Paper V.

The decentralised nature of WiFi also means that it lacks protocol support
for enforcing policies on resource usage (notably airtime usage), which would
otherwise be an obvious way to increase performance for some applications,
especially in contested scenarios. There are, however, some attempts at apply-
ing policies to WiFi networks [40–42] but none of them are at a state where
they can realistically be deployed on today’s networks. Some enterprise access
points do offer features related to airtime fairness and policy configuration [43],
but being a proprietary system, not much information is available for study
of the mechanisms involved. How to design a workable policy enforcement
mechanism for WiFi is discussed in Paper VI.

9

3.3 High-performance software packet processing
Packet processing in the network has historically been limited to the most
basic operations, simply because high traffic volume means very tight bounds
on the time spent processing each packet. However, as hardware becomes more
capable, and costs drop, it becomes increasingly feasible to perform advanced
processing as part of the data path. This has lead to an increasing demand for
programmable capabilities in networking hardware. One example of this is
the advent of of programmable hardware devices, such as the NetFPGA [44],
which enables custom packet processing on specialised hardware, by exposing
an API that makes it possible to run arbitrary packet processing tasks on the
FPGA-based dedicated hardware. Another example is the P4 language [45],
which seeks to extend this programmability to a wider variety of packet
processing hardware.

However, even though specialised hardware has gained data plane program-
mability, it still cannot match the flexibility and low cost of common off-the-
shelf (COTS) hardware. Several packet processing systems running on COTS
hardware have appeared over the last several years. Examples of this include
applications performing single functions, such as switching [46], routing [47],
named-based forwarding [48], classification [49], caching [50] or traffic gen-
eration [51]. They also include more general solutions which are highly
customisable and can operate on packets from a variety of sources [52–57].

One challenge with using COTS hardware, is that in order to achieve
high performance it is necessary to remove any bottlenecks between the
networking interface card (NIC) and the program performing the packet
processing. Since one of the main sources of performance bottlenecks is the
interface between the operating system kernel and the userspace applications
running on top of it (because of the high overhead of a system call and
complexity of the underlying feature-rich generic networking stack in the
operating system), low-level packet processing frameworks have to manage
this overhead in one way or another. The approaches taken to this fall into
three broad categories: (a) implementing parts of the application as a module
inside the kernel itself, with examples such as the Open vSwitch [57] virtual
switch and the Click [55] virtual router framework; (b) providing an interface
for userspace to access packet data with lower overhead than with traditional
sockets, such as in PF_RING [58], the Packet I/O engine that is part of
PacketShader [47] or the Netmap [59] framework, as well as special-purpose
operating systems such as Arrakis [60] and ClickOS [61]; or (c) bypassing the
kernel entirely and handing over control of the networking device directly
to userspace, where examples include the PF_RING ZC module [62], the
hardware-specific Solarflare OpenOnload [63] or, most prominently, the
DataPlane Development Kit (DPDK) [64].

Each of the three categories of solutions have different drawbacks and
tradeoffs, and while all of them offer better performance than the regular oper-
ating system network stack, the relative performance of each solution varies
widely. The highest raw performance numbers are seen with kernel bypass

10

solutions, of which DPDK represents the state of the art. DPDK is com-
monly used with higher-level processing frameworks such as Cisco’s VPP [54],
which offers a programming model that helps maximise performance for many
applications.

Because kernel bypass solutions need direct access to the hardware to
achieve the high performance numbers, it is difficult to integrate with sys-
tems where the kernel plays a dominant role in resource abstraction and
isolation, such as container-based and virtualised workloads. A different solu-
tion, that allows more fine-grained integration into the operating system, has
been developed by the Linux kernel community over the last several years.
This solution is called XDP, but has been lacking a high-level architectural
description. Remedying this lack is the topic of Paper VIII.

11

4 Research questions
In order to achieve the overall research objectives outlined in Section 2, we
formulate the following research questions that we seek to answer in this work:

1. How bloated is the internet?
Before one can address a problem, one must first be aware that it exists.
In particular, before spending the considerable resources required to
deploy upgrades to the edge of the internet (with its billions of connected
devices), one must be convinced of the gain. While the bufferbloat
problem can be easily demonstrated in a lab, there has been some debate
over how prevalent it is in the real world (as discussed in the previous
section). Since no one has a global view of the internet, finding the right
answer is no trivial task. However, we can make a dent in the problem
by analysing the data we do have available, and by looking at smaller
scale representative slices of the network. In this work we set out to do
just that, and thereby further the understanding of the problem.

2. Can we solve bufferbloat by smarter queue management?
Knowing that there is a problem to be solved, one naturally starts
looking for solutions. In the previous years, several possible solutions
to the bufferbloat issue have been proposed, often in the form of queue
management and packet scheduling algorithms that seek to ensure low
latency even when a link is heavily loaded.
However, such algorithms are often evaluated only by their inventors, in
scenarios that reflect the design goals of the algorithms. Thus, comparat-
ive studies of several algorithms are needed to fully assess their relative
efficacy. We set out to provide such a comparison, thereby answering the
question of how well the bufferbloat issue can be resolved today. This
experimental comparison clearly shows that the FQ-CoDel algorithm
can offer tremendous performance benefits, especially for low-rate flows
that do not build a large queue themselves. We seek to examine this in
more detail by supplementing our experimental results with an analysis
of the conditions under which flows can benefit from the low latency
guarantees of the algorithm, and what exactly those guarantees are.
Finally, we seek to improve the deployment aspects of new bufferbloat
solutions. An important aspect of this is ease configuration, especially
in devices at the edge of the internet, where the problem tends to
be worse. Often, several different parts, such as queue management
and bandwidth shaping, need to be integrated into a solution before it
becomes deployable. To ease such deployment, we seek to develop a
solution that integrates state of the art algorithms into an easy to deploy
solution for bufferbloat at the network edge.

12

3. How can we improve the performance of WiFi?
As explained in the previous section, two major performance issues
affect modern WiFi networks: The bufferbloat issue, and the perform-
ance anomaly. We set out to find workable solutions for both these
issues, using the Linux kernel as our example platform. In addition,
we set out to explore how these solutions can be used to implement
another performance-enhancing feature: Policy-based airtime assign-
ment to devices on a WiFi network. Finally, we set out to improve the
way WiFi networks interact with other bufferbloat mitigation solutions
implemented in Linux, focusing on the TCP Small Queues optimisation
in the TCP stack.

4. How can we integrate high-performance programmable packet processing
into the operating system?
As outlined in the previous section, while several solutions for high-
performance packet processing exist, to avoid the performance penalty
imposed by interacting with the operating system kernel for every
packet, they all either heavily modify the operating system, or bypass it
entirely. However, this limits flexibility in packet processing and makes
it harder to integrate it into a mixed environment where applications
relying on the regular operating system environment is also present. We
seek to investigate how the performance barrier of the operating system
can be lifted, allowing programmable packet processing to be integrated
into the operating system in a cooperative way.

13

5 Contributions
The main contributions of this work are the following:

1. A better understanding of the magnitude of bufferbloat in the internet
We contribute to a better understanding of bufferbloat and its magnitude
in the internet. We do this by combining a large scale active measurement
dataset from the public internet with a smaller scale passive measurement
dataset from an internet service provider access network. We show that
significant latency variation occurs, with large differences between re-
gions, but negligible development over time, despite consistent increases
in bandwidth over the same time span. In addition, we use the observed
variation in latency as a way to quantify excess latency, and combine it
with a novel approach to identify bufferbloat from TCP RTT samples,
which we employ on a subset of the data to show that at least some of
the latency variation can be attributed to bloat.

2. An evaluation of existing solutions for bufferbloat mitigation
We contribute an extensive experimental evaluation of several mod-
ern queue management algorithms in a Linux testbed setup, designed
to model a home network setup. This evaluation provides important
real-world performance data on modern queue management algorithms.
Our evaluation covers a range of simulated access network connection
speeds, as well as a WiFi bottleneck scenario. We show that modern
queue management algorithms can significantly reduce bufferbloat at
the access link; however, the tested AQM algorithms have some issues
with transient delay spikes as flows start up, and they exacerbate TCP
flow unfairness, while the tested fairness queueing algorithms provide
consistently low latency and almost perfect fairness. Our web and VoIP
application tests show that the improvements in latency afforded by
the algorithms translate to real-world application performance benefits.
Finally, we show that the algorithms are less effective on a WiFi bottle-
neck, due to buffering in lower layers of the operating system network
stack.

3. An analysis of the sparse flow behaviour of FQ-CoDel
Our evaluation of queue management algorithms clearly shows that the
FQ-CoDel algorithm achieves the lowest latency for many workloads,
because of its optimisation for prioritisation of flows that do not build a
queue, so-called “sparse flows”. We contribute to the understanding of
this mechanism by performing an analysis of which conditions a packet
flow must fulfil to be considered “sparse” by the FQ-CoDel queue
management algorithm, and thus given priority and low latency. We
combine analytical expressions derived from the algorithm description
with a numerical simulation, and formulate conditions that a flow needs
to fulfil to keep the “sparse” status, as well as expressions for the expected
latency of such a flow.

14

4. An integrated queueing solution targeting home network gateways
We present an integrated queue management solution for home network
gateways. This solution, called CAKE, builds on the basic fairness
queueing design of FQ-CoDel, but adds several features are useful in a
home gateway. These features include traffic shaping, host-based fairness
queueing, DiffServ handling and TCP ACK filtering. Our evaluation
shows that these features provide compelling benefits for their respective
use cases. In addition, the integration of these features into a single
queueing discipline significantly eases deployment and configuration,
which is an important aspect of defeating bufferbloat in real-world
networks.

5. A solution for improving the performance of WiFi
We design and implement workable measures to resolve both the buf-
ferbloat issue and the performance anomaly in WiFi, using Linux as an
implementation platform. Our solution reduces latency in the stack
by an order of magnitude by improving queue management, and it
increases the efficiency of the network with up to a factor of five by
enforcing airtime fairness between devices. We have worked with the
Linux community to get our solution incorporated into the mainstream
Linux kernel, to make sure it is not just a theoretical solution, but rather
one that will find its way into deployed devices. Our solution builds on
state of the art queue management algorithms, and showcases new ways
of adapting these techniques to the WiFi domain.

6. An airtime policy enforcement system for WiFi
Building on our airtime fairness system for solving the performance
anomaly, we design and implement a solution for enforcing configurable
airtime policy assignment between stations in an infrastructure WiFi
network. This enables several interesting use cases, from a limited guest
network use case, to a full network slicing solution as is being discussed
for future 5G network environments. We implement the system in
Linux and show how it can be used to improve performance of real-
world applications.

7. An improvement to the TCP Small Queues mechanism for WiFi networks
The “TCP Small Queues” feature included in the Linux kernel limits
the size of the queue the TCP stack keeps for each flow, in order to
reduce queueing latency. We show that this has an adverse impact on the
performance of TCP over WiFi, because there is not enough data queued
to build aggregates at the WiFi MAC level. We analyse the magnitude of
this degradation and implement a solution which selectively tunes the
TCP Small Queues system when flow egress is over a WiFi link.

15

8. A description and evaluation of the eXpress Data Path programmable packet
processing system in Linux
The Linux kernel networking community have designed and imple-
mented the eXpress Data Path system in the Linux kernel over the last
several years. This system allows high-performance packet processing
to be integrated into the kernel in a cooperative way, increasing flex-
ibility compared to other systems, while retaining high performance.
We contribute a description of the architecture of the XDP system,
along with a thorough performance evaluation featuring both synthetic
benchmarks and real-world application examples. We make the case that
XDP presents a compelling tradeoff in terms of features, flexibility and
performance compared to other related systems.

9. A tool for automation and re-usability of experiments
In the course of answering the main research questions and developing
the contributions outlined above, we have developed and described a
testing tool that helps facilitate future experimental work, by making
tests repeatable and results sharable. The tool is called The FLExible
Network Tester (Flent), and contains several new features for easy data
exploration and automation of experimental work. Flent has shown
real-world utility and is widely used in the bufferbloat community.

16

6 Research method
This thesis is written within the field of computer science, more specifically
in the area of computer networking. Computer science, in turn, is a part of
the broader field of computing. This field is quite diverse, but can be viewed as
being comprised of three different aspects, each drawing on different traditions,
namely mathematics, engineering and science [65]. In this section, we situate
the work presented in this thesis in the broader field of computing and these
three aspects that comprise the field.

The mathematical origins of computing are tied to the theoretical founda-
tions of the field, most notably the theory of computation and the question of
what can be computed. In addition, mathematical analysis and proof theory
plays an important role in many branches of computing. The engineering
aspect has also played a significant role throughout the history of computing,
simply because the practical realisation of computation (i.e., the building of
actual computers) has been an integral part of the development of the field.
Today, the engineering influences is most clearly seen in the term “software
engineering”. Finally, “computer science” is commonly used when naming
university departments (as is the case at Karlstad University), but determining
what exactly it is a science of has been the subject of quite some discussion.

As mentioned above, the research presented in this thesis concerns com-
puter networks and their function. It wasn’t long after the first computers
were built that it became evident that it was useful to have different com-
puters communicate with each other. This soon led to the development of the
Arpanet, which in turn has developed into the modern internet [66]. Today,
the internet has become such an integral part of society that many functions
cannot exist without it. Like the rest of the field of computing, networking
rests on the three legs of mathematical theory (e.g., queueing theory, distrib-
uted algorithms, etc.), engineering (the internet as a whole is by far the largest
and most complicated machine built by humankind) and science (where the
network itself can become the subject of study).

The research presented in this thesis contains elements of all three aspects
comprising the broader field. Mathematical analysis of an algorithm is the
primary focus of Paper III, and is also incorporated into Paper V, where it
serves to inform the design and implementation of the presented solution.

The engineering aspect is present in most of the work presented here.
Indeed, an important motivation of the work has been to ensure the ideas are
developed all the way to the point where they can be implemented in real
systems, and thus improve today’s networks. The primary avenue for this
has been open source software, most notably the Linux kernel. The solutions
developed in Papers IV, V, VI, VII and VIII are all included in the upstream
Linux kernel, or are in the process of being incorporated at the time of writing.
And the Flent tool presented in Paper IX is released as its own open source
project, and has been used in the bufferbloat community for years.

Finally, the aspect of scientific study is included where the functioning
of the network itself becomes the object of study. In networking, this is

17

usually achieved in one of three ways: By simulation (where a computer
program will simulate an entire network and the packets flowing through
it), emulation (where the network is simulated, but interacts with, e.g., real
operating system network stacks) and experiments (where real networking
equipment and software is used in the experiments). All too often, new
concepts in networking are never developed past the simulation stage, which
means they languish unused and do not make it to the stage where they can be
deployed on the real internet. In addition, simulation is built on idealisations
which get ever further from reality as optimisations are added to networking
devices, often leading to very different behaviour than those assumed by the
simulation tools. To counteract this, the focus in this thesis is very deliberately
on the latter two kinds of study. Papers I and II are examples of this, while
many of the others include experimental studies as part of the evaluation.

18

7 Summary of appended papers

Paper I – Measuring Latency Variation in the Internet

In this paper we examine two complementary datasets to assess to what extent
bufferbloat is a real problem in the internet. We do this by analysing latency
variation in a large-scale active measurement dataset from the Measurement
Lab Network Diagnostic Tool, combined with a passive measurement data set
from an access link.

The former dataset allows us to look at large scale trends, but because it con-
sists of data from active measurements performed over the public internet,
we can only use it to infer the potential for bufferbloat, not the frequency
with which it occurs. The other dataset is much smaller in scale, but is based
on passive measurements and comes from a network that has known path
characteristics. This means that we can make conclusions about what the data
shows with higher certainty. The combination of these two datasets allows us
to say something meaningful of the latency characteristics of the internet as a
whole.

We find that significant latency variation is present in both datasets. Addition-
ally, a more detailed analysis of a subset of the data shows that at least some of
it can be attributed to bufferbloat.

Paper II – The Good, the Bad and the WiFi

In this paper we evaluate a selection of bottleneck queue management schemes
in a test-bed representative of residential internet connections of both sym-
metrical and asymmetrical bandwidths as well as WiFi. Latency under load
and the performance of VoIP and web traffic patterns are evaluated under
steady state conditions. Furthermore, the impact of the algorithms on fairness
between TCP flows with different RTTs, and also the transient behaviour of
the algorithms at flow startup is examined.

We show that the tested AQM algorithms can significantly improve the steady
state performance, but that they exacerbate TCP flow unfairness and severely
struggle to contain queueing delay in transient conditions, such as when flows
start up. The tested fairness queueing algorithms, on the other hand, almost
completely eliminate these problems and give consistently low latency and
high throughput in the tested scenarios.

Finally, we show that all the tested algorithms perform worse on a WiFi bot-
tleneck because they are limited by significant queueing in lower layers of the
stack, and thus outside the control of the algorithms.

19

Paper III – Analysing the Latency of Sparse Flows in the FQ-CoDel
Queue Management Algorithm

In this paper we analyse an aspect of the FQ-CoDel queue management
algorithm that has thus far not been well-explored: The conditions under
which a particular flow is considered “sparse”, and thus receives preferential
treatment by FQ-CoDel. We formulate a set of constraints that a sparse flow
must satisfy, and also formulate a set of expressions for the expected queueing
latency of sparse flows.

To verify the analytical expressions, we use a numerical example to show how
many of a given type of sparse flows (Voice over IP traffic) a given link can
support, and verify the analytical predictions in a numerical simulation. We
show that the number of sparse flows that a given bottleneck can service with
low latency is only dependent on the number of backlogged bulk flows at the
bottleneck. Furthermore, we show that as long as the maximum number of
sparse flows is not exceeded, all sparse flows can expect a very low queueing
latency through the bottleneck.

Paper IV – Piece of CAKE

In this paper we present the design and implementation of the CAKE queue
management algorithm, which is a comprehensive network queue management
system designed specifically for home internet gateways. CAKE is built upon
the FQ-CoDel hybrid AQM and flow queueing algorithm, but adds several
features targeted specifically at home gateways while being easy to configure
and deploy. These features include: bandwidth shaping with overhead com-
pensation for various link layers; reasonable DiffServ handling; improved flow
hashing with both per-flow and per-host queueing fairness; and filtering of
TCP ACKs.

Our evaluation shows that each of these features offer compelling advantages
for their respective use cases, giving CAKE the potential to significantly im-
prove the performance of last-mile internet connections. CAKE has been
accepted into the upstream Linux kernel and is included from Linux v4.19,
released in October 2018.

Paper V – Ending the Anomaly

In this paper we present workable solutions to both bufferbloat at the WiFi
link and the 802.11 performance anomaly. We implement a queueing scheme
in Linux that is based on FQ-CoDel and tightly integrated with the MAC
layer to solve the bufferbloat issue, and a scheduler-based solution to achieving
airtime fairness.

We formulate an analytical model for achievable 802.11n throughput with and
without airtime fairness and use that to evaluate our solution in combination
with a series of testbed experiments. We achieve an order of magnitude reduc-
tion in latency under load, large improvements in multi-station throughput,

20

and nearly perfect airtime fairness for both UDP and TCP traffic. Further
experiments with application traffic confirm that our modifications provide a
significant performance gain for real-world traffic.

Paper VI – PoliFi

In this paper we present the design and implementation of PoliFi, an airtime
policy solution for WiFi. PoliFi builds on the previous work presented in
Paper V, but generalises the airtime fairness solution and adds a mechanism
for specifying policies for how airtime is assigned to different stations. In
addition, it includes a policy daemon that enforces the user-configured policies
in real time, and is able to implement a variety of useful policies. These
include prioritisation of specific devices; balancing groups of devices for sharing
between different logical networks or network slices; and limiting groups of
devices to implement guest networks or other low-priority services.

Our evaluation shows that that PoliFi successfully enforces the desired policies;
and we show how these can be used to improve the performance of a real-world
DASH video streaming application.

Paper VII – Adapting TCP Small Queues for IEEE 802.11 Networks

In this paper we examine the interactions between WiFi networks and the
TCP Small Queues (TSQ) mechanism that is a part of the Linux TCP stack
and is designed to keep queues small for TCP sockets originating on the local
machine. We show that the default settings for TSQ prevent enough data from
being buffered to properly utilise the packet aggregation mechanism in WiFi
links. We evaluate a range of tuning parameters for 802.11n and 802.11ac and
show that it is possible to double the throughput for 802.11n and increase it
by an order of magnitude for 802.11ac, with a negligible increase in queueing
latency.

Paper VIII – The eXpress Data Path

In this paper we describe the eXpress Data Path (XDP) programmable packet
processing framework that has been introduced into the Linux networking
stack over that last several years. XDP represents a novel approach to program-
mable packet processing, where the processing is integrated into the kernel
device drivers in a cooperative way, by way of an execution environment that
executes custom byte code which the kernel statically analyses for safety, and
translates into native instructions.

This approach allows user programs to selectively process some packets, while
letting the operating system networking stack handle others. In addition,
packet processing programs can make use of kernel features to perform certain
operations, and access state from both the networking stack, userspace pro-
grams and other parts of the kernel. Together, these features offer compelling

21

advantages by enabling programmable packet processing without the all-or-
nothing approach imposed by user-space networking applications that need to
take over the networking device entirely.

Our evaluation shows that XDP achieves single-core packet processing per-
formance as high as 24 million packets per second. We also illustrate the
flexibility of the programming model through three example use cases: layer-3
routing, inline DDoS protection and layer-4 load balancing.

Paper IX – Flent

In this paper we present a tool designed to make experimental evaluations
of networks more reliable and easier to perform. This tool, called Flent,
works by composing well-known benchmarking tools to, for example, run
tests consisting of several bulk data flows combined with simultaneous latency
measurements. Tests are specified in source code, and several common tests are
included with the tool. In addition, Flent contains features to automate test
runs, and to interactively plot and explore data collected from experiments.

22

8 Conclusions and future work
In this thesis we have explored a range of performance barriers that can limit
real-world network performance, and identified solutions for them. The first
such issue is bufferbloat, where we have contributed to understanding the
extent of the problem through an assessment of the magnitude of excess latency
in the public internet; performed a thorough evaluation of existing queue
management solutions targeted at mitigating bufferbloat; and analysed the
performance characteristics of the state of the FQ-CoDel algorithm in detail.
Following this, we have shown how deployment of bufferbloat solutions can
be made easier through the CAKE integrated queue management and traffic
shaping system.

Having identified WiFi networks as an area where existing bufferbloat
solutions fell short, we have designed and implemented a solution for buffer-
bloat tailored specifically to WiFi networks. In doing so, we identified several
other performance barriers in WiFi networks, that we also offer solutions for.
These include the 802.11 performance anomaly, the interaction between WiFi
networks and latency-reducing measures for TCP, and the lack of a mechanism
for airtime policy enforcement in WiFi networks.

Turning to a more general, but related, performance barrier in software-
based network processing, we have investigated how the overhead that the
operating system imposes on high-performance packet processing applications
can be reduced. We have contributed a description and thorough evaluation of
the Linux community’s answer to this problem, which allows integration of
packet processing programs into the networking stack in a cooperative way,
achieving both flexibility and high performance.

Finally, over the course of implementing our solutions for the research
problems, we have implemented a measurement tool designed to make exper-
imental evaluations of networks more reliable and easier to perform. This
tool is already widely used in the bufferbloat community, and can significantly
increase the quality and availability of sophisticated network measurements in
the future.

Looking forward, while the contributions presented here represent a signi-
ficant step forward, there are certainly still performance barriers that prevent
real-world networks from achieving their maximum performance potential.
In the bufferbloat space, the most significant road-block is no doubt the effort
needed to get the new technology deployed to the hundreds of millions of
existing devices all over the world, many of which have an upgrade cycle
measured in years. However, it is encouraging to see that awareness of the
problem is at least increasing, with prominent examples being deployment in
OS X,2 and the inclusion of a bufferbloat measure in more online speed tests.3

As far as WiFi performance is concerned, there are several areas that
warrant further study. Adopting the solutions presented here to the case

2https://lists.bufferbloat.net/pipermail/bloat/2018-September/008615.
html

3E.g., https://www.dslreports.com/speedtest and https://fast.com.

https://lists.bufferbloat.net/pipermail/bloat/2018-September/008615.html
https://lists.bufferbloat.net/pipermail/bloat/2018-September/008615.html
https://www.dslreports.com/speedtest
https://fast.com

23

where more functionality is offloaded into hardware is one such issue; either
solutions have to be implemented in the hardware or firmware itself, or the
operating system-level solutions need to take potential queueing at lower
layers into account. Simultaneous transmission to multiple devices will likely
play an increasing role in future WiFi deployments, which means scheduling
algorithms need to be adapted to deal with the case where several queues need
to be serviced simultaneously. In addition, re-evaluating the 802.11e QoS
mechanism in the light of modern queueing mechanisms could be another
interesting area of inquiry. Finally, while the solutions we have seen so far
has been limited to single access point cases, it is quite probable that better
results could be achieved by cooperation between neighbouring access points
in a dense deployment scenario (which is becoming increasingly common as
WiFi becomes ever more ubiquitous).

The high-performance software packet processing space is perhaps the
most active of the subject areas we touch upon in this thesis. As we have
seen, there are several competing architectures being explored; and future
work includes adding features such as transport acceleration and full or partial
hardware offload. Finally, there are no doubt many application areas that will
benefit from the programmable capabilities enabled by frameworks such as
XDP in the future.

In conclusion, the work presented here represents a significant contribu-
tion to improving the performance of real-world networks today and in the
future. But it is clear that future improvements will continue to push the per-
formance envelope towards ever higher capacity, lower latency and ubiquitous
connectivity everywhere.

References
[1] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”

ACM Queue, vol. 9, no. 11, pp. 40–54, Nov. 2011.

[2] C. Staff, “BufferBloat: what’s wrong with the internet?” Communications
of the ACM, vol. 55, no. 2, pp. 40–47, Feb. 2012.

[3] C. Kreibich et al., “Netalyzr: illuminating the edge network,” in Pro-
ceedings of the 10th ACM SIGCOMM conference on Internet measurement.
ACM, 2010, pp. 246–259.

[4] S. Sundaresan et al., “Broadband internet performance: a view from the
gateway,” in ACM SIGCOMM computer communication review, vol. 41.
ACM, 2011, pp. 134–145.

[5] M. Chetty et al., “Measuring broadband performance in South Africa,”
in 4th Annual Symposium on Computing for Development. ACM, 2013.

[6] M. Dischinger et al., “Characterizing residential broadband networks,” in
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 43–56.

24

[7] C. Chirichella and D. Rossi, “To the moon and back: are internet buf-
ferbloat delays really that large?” in 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2013, pp.
417–422.

[8] H. Jiang et al., “Tackling bufferbloat in 3g/4g networks,” in Proceedings
of the 2012 Internet Measurement Conference. ACM, 2012, pp. 329–342.

[9] S. Alfredsson et al., “Impact of TCP congestion control on bufferbloat in
cellular networks,” in IEEE 14th International Symposium and Workshops
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2013.

[10] J. Aikat et al., “Variability in TCP round-trip times,” in ACM conference
on Internet measurement. ACM, 2003, pp. 279–284.

[11] M. Allman, “Comments on bufferbloat,” ACM SIGCOMM Computer
Communications Review, vol. 43, no. 1, pp. 31–37, January 2013.

[12] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp.
397–413, 1993.

[13] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm
for increasing the robustness of RED’s active queue management,” 2001.
http://www.icir.org/floyd/papers.html

[14] P. McKenney, “Stochastic fairness queueing,” in INFOCOM ’90. Ninth An-
nual Joint Conference of the IEEE Computer and Communication Societies,
vol. 2. IEEE, jun 1990, pp. 733–740.

[15] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

[16] M. May et al., “Reasons not to deploy RED,” in 1999 Seventh Interna-
tional Workshop on Quality of Service (IWQoS ’99), 1999, pp. 260–262.

[17] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, Jul. 2012.

[18] R. Pan et al., “PIE: A lightweight control scheme to address the buf-
ferbloat problem,” in 2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR), July 2013, pp. 148–155.

[19] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

[20] G. Carofiglio and L. Muscariello, “On the impact of TCP and per-
flow scheduling on internet performance,” IEEE/ACM Transactions on
Networking, vol. 20, no. 2, pp. 620–633, 2012.

http://www.icir.org/floyd/papers.html

25

[21] F. Checconi, L. Rizzo, and P. Valente, “QFQ: Efficient packet scheduling
with tight guarantees,” IEEE/ACM Transactions on Networking (TON),
vol. 21, no. 3, pp. 802–816, 2013.

[22] A. Kortebi et al., “Evaluating the number of active flows in a sched-
uler realizing fair statistical bandwidth sharing,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 33. ACM, 2005, pp. 217–228.

[23] J. Corbet, “Network transmit queue limits,” LWN Article, August 2011.
https://lwn.net/Articles/454390/

[24] G. Niestegge, “The ‘leaky bucket’ policing method in the ATM (Asyn-
chronous Transfer Mode) network,” International Journal of Communic-
ation Systems, vol. 3, no. 2, pp. 187–197, 1990.

[25] A. Eleftheriadis and D. Anastassiou, “Constrained and general dynamic
rate shaping of compressed digital video,” in International Conference on
Image Processing, vol. 3. IEEE, 1995, pp. 396–399.

[26] “IEEE standard for information technology–telecommunications and
information exchange between systems local and metropolitan area
networks–specific requirements part 11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications,” IEEE Std 802.11-
2012 (Revision of IEEE Std 802.11-2007), March 2012.

[27] M. Heusse et al., “Performance anomaly of 802.11 b,” in INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 2. IEEE, 2003, pp. 836–843.

[28] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block:
Much ado about nothing?” Oslo University, Tech. Rep. 434, 2013.

[29] A. Showail, K. Jamshaid, and B. Shihada, “Buffer sizing in wireless net-
works: challenges, solutions, and opportunities,” IEEE Communications
Magazine, vol. 54, no. 4, pp. 130–137, Apr 2016.

[30] K. Cai et al., “Wireless Unfairness: Alleviate MAC Congestion First!”
in Proceedings of the Second ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization, ser.
WinTECH ’07. ACM, 2007, pp. 43–50.

[31] L. B. Jiang and S. C. Liew, “Proportional fairness in wireless LANs and ad
hoc networks,” in Wireless Communications and Networking Conference,
2005 IEEE, vol. 3. IEEE, 2005, pp. 1551–1556.

[32] P. Lin, W.-I. Chou, and T. Lin, “Achieving airtime fairness of delay-
sensitive applications in multirate IEEE 802.11 wireless LANs,” IEEE
Communications Magazine, vol. 49, no. 9, pp. 169–175, 2011.

https://lwn.net/Articles/454390/

26

[33] L. Sanabria-Russo et al., “Future evolution of CSMA protocols for the
IEEE 802.11 standard,” in 2013 IEEE International Conference on Com-
munications Workshops (ICC). IEEE, 2013, pp. 1274–1279.

[34] T. Joshi et al., “Airtime fairness for IEEE 802.11 multirate networks,”
IEEE Transactions on Mobile Computing, vol. 7, no. 4, pp. 513–527, Apr
2008.

[35] J. Dunn et al., “A practical cross-layer mechanism for fairness in 802.11
networks,” in First International Conference on Broadband Networks
(BroadNets 2004). IEEE, 2004, pp. 355–364.

[36] T. Razafindralambo et al., “Dynamic packet aggregation to solve perform-
ance anomaly in 802.11 wireless networks,” in Proceedings of the 9th ACM
international symposium on Modeling analysis and simulation of wireless
and mobile systems. ACM, 2006, pp. 247–254.

[37] M. Kim, E.-C. Park, and C.-H. Choi, “Adaptive two-level frame aggrega-
tion for fairness and efficiency in IEEE 802.11n wireless LANs,” Mobile
Information Systems, 2015.

[38] R. G. Garroppo et al., “Providing air-time usage fairness in IEEE 802.11
networks with the deficit transmission time (DTT) scheduler,” Wireless
Networks, vol. 13, no. 4, pp. 481–495, Aug 2007.

[39] R. Riggio, D. Miorandi, and I. Chlamtac, “Airtime Deficit Round Robin
(ADRR) packet scheduling algorithm,” in 2008 5th IEEE International
Conference on Mobile Ad Hoc and Sensor Systems, Sep. 2008, pp. 647–652.

[40] M. Richart et al., “Resource allocation for network slicing in WiFi ac-
cess points,” in 13th International Conference on Network and Service
Management, CNSM, 2017, 2017.

[41] K. Katsalis et al., “Virtual 802.11 wireless networks with guaranteed
throughout sharing,” in 2015 IEEE Symposium on Computers and Com-
munication (ISCC), Jul 2015.

[42] Y. Yiakoumis et al., “Slicing home networks,” in Proceedings of the
2Nd ACM SIGCOMM Workshop on Home Networks, ser. HomeNets
’11. ACM, 2011.

[43] “Air Time Fairness (ATF) Phase1 and Phase 2 Deployment Guide,”
Cisco systems, 2015. https://www.cisco.com/c/en/us/td/docs/wireless/
technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_
Deployment_Guide.html

[44] J. W. Lockwood et al., “NetFPGA–an open platform for gigabit-rate
network switching and routing,” in IEEE International Conference on
Microelectronic Systems Education. IEEE, 2007.

https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html

27

[45] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, 2014.

[46] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”
in Proceedings of the 8th international conference on Emerging networking
experiments and technologies. ACM, 2012.

[47] S. Han et al., “PacketShader: a GPU-accelerated software router,” in ACM
SIGCOMM Computer Communication Review, vol. 40, no. 4. ACM,
2010.

[48] D. Kirchner et al., “Augustus: a CCN router for programmable net-
works,” in Proceedings of the 3rd ACM Conference on Information-Centric
Networking. ACM, 2016.

[49] P. M. Santiago del Rio et al., “Wire-speed statistical classification of
network traffic on commodity hardware,” in Proceedings of the 2012
Internet Measurement Conference. ACM, 2012.

[50] R. B. Mansilha et al., “Hierarchical content stores in high-speed ICN
routers: Emulation and prototype implementation,” in Proceedings of the
2nd ACM Conference on Information-Centric Networking. ACM, 2015.

[51] P. Emmerich et al., “Moongen: A scriptable high-speed packet generator,”
in Proceedings of the 2015 Internet Measurement Conference. ACM, 2015.

[52] S. Han et al., “MegaPipe: A new programming interface for scalable
network I/O,” in Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), 2012.

[53] T. Marian, K. S. Lee, and H. Weatherspoon, “NetSlices: scalable
multi-core packet processing in user-space,” in Proceedings of the eighth
ACM/IEEE symposium on Architectures for networking and communica-
tions systems. ACM, 2012.

[54] L. Linguaglossa et al., “High-speed software data plane via vectorized
packet processing,” Telecom ParisTech, Tech. Rep., 2017.

[55] R. Morris et al., “The Click modular router,” ACM SIGOPS Operating
Systems Review, vol. 33, no. 5, 1999.

[56] M. Dobrescu et al., “RouteBricks: exploiting parallelism to scale software
routers,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009.

[57] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’15), 2015.

28

[58] L. Deri, “Modern packet capture and analysis: Multi-core, multi-gigabit,
and beyond,” in the 11th IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2009.

[59] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012.

[60] S. Peter et al., “Arrakis: The operating system is the control plane,” ACM
Transactions on Computer Systems (TOCS), vol. 33, no. 4, 2016.

[61] J. Martins et al., “ClickOS and the art of network function virtualization,”
in Proceedings of the 11th USENIXConference on Networked Systems Design
and Implementation. USENIX Association, 2014.

[62] “PF_RING ZC (Zero Copy),” Ntop project, 2018. https://www.ntop.
org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/

[63] “OpenOnload,” Solarflare Communications Inc, 2018. https://www.
openonload.org/

[64] “Data plane development kit,” Linux Foundation, 2018. https://www.
dpdk.org/

[65] M. Tedre, The science of computing: Shaping a discipline. CRC Press,
2014.

[66] H. Bidgoli, The Internet Encyclopedia, Volume 2 (G - O). Wiley, 2004.

https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.openonload.org/
https://www.openonload.org/
https://www.dpdk.org/
https://www.dpdk.org/

IPaper

Reprinted from

Measuring Latency
Variation in the Internet

ACM CoNEXT ’16, December 12–15, 2016, Irvine, CA, USA

“Science cannot progress without reliable and accurate
measurement of what it is you are trying to study.

The key is measurement, simple as that.”

Robert D. Hare

Measuring Latency Variation in the Internet

Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig and Anna
Brunstrom

toke.hoiland-jorgensen@kau.se, bengta@sics.se, per.hurtig@kau.se,
anna.brunstrom@kau.se

Abstract

We analyse two complementary datasets to quantify the latency vari-
ation experienced by internet end-users: (i) a large-scale active measure-
ment dataset (from the Measurement Lab Network Diagnostic Tool)
which shed light on long-term trends and regional differences; and (ii)
passive measurement data from an access aggregation link which is used
to analyse the edge links closest to the user.

The analysis shows that variation in latency is both common and
of significant magnitude, with two thirds of samples exceeding 100ms
of variation. The variation is seen within single connections as well as
between connections to the same client. The distribution of experienced
latency variation is heavy-tailed, with the most affected clients seeing an
order of magnitude larger variation than the least affected. In addition,
there are large differences between regions, both within and between
continents. Despite consistent improvements in throughput, most regions
show no reduction in latency variation over time, and in one region it
even increases.

We examine load-induced queueing latency as a possible cause for the
variation in latency and find that both datasets readily exhibit symptoms
of queueing latency correlated with network load. Additionally, when
this queueing latency does occur, it is of significant magnitude, more
than 200ms in the median. This indicates that load-induced queueing
contributes significantly to the overall latency variation.

1 Introduction
As applications turn ever more interactive, network latency plays an increas-
ingly important role for their performance. The end-goal is to get as close as
possible to the physical limitations of the speed of light [1]. However, today
the latency of internet connections is often larger than it needs to be. In this

31

32 Paper I

work we set out to quantify how much. Having this information available is
important to guide work that sets out to improve the latency behaviour of the
internet; and for authors of latency-sensitive applications (such as Voice over
IP, or even many web applications) that seek to predict the performance they
can expect from the network.

Many sources of added latency can be highly variable in nature. This
means that we can quantify undesired latency by looking specifically at the
latency variation experienced by a client. We do this by measuring how much
client latency varies above the minimum seen for that client. Our analysis
is based on two complementary sources of data: we combine the extensive
publicly available dataset from the Measurement Lab Network Diagnostic
Tool (NDT) with a packet capture from within a service provider access
network. The NDT data, gathered from 2010 to 2015, comprises a total of
265.8 million active test measurements from all over the world. This allows
us to examine the development in latency variation over time and to look at
regional differences. The access network dataset is significantly smaller, but
the network characteristics are known with greater certainty. Thus, we can be
more confident when interpreting the results from the latter dataset. These
differences between the datasets make them complement each other nicely.

We find that significant latency variation is common in both datasets. This
is the case both within single connections and between different connections
from the same client. In the NDT dataset, we also observe that the magnitude
of latency variation differs between geographic regions, both between and
within continents. Looking at the development over time (also in the NDT
dataset), we see very little change in the numbers. This is in contrast to the
overall throughput that has improved significantly.

One important aspect of latency variation is the correlation between
increased latency and high link utilisation. Queueing delay, in particular, can
accumulate quickly when the link capacity is exhausted, and paying attention
to such scenarios can give insight into issues that can cause real, if intermittent,
performance problems for users. We examine queueing delay as a possible
source of the observed latency variation for both datasets, and find strong
indications that it is present in a number of instances. Furthermore, when
queueing latency does occur it is of significant magnitude.

The rest of the paper is structured as follows: Section 2 introduces the
datasets and the methodology we have used to analyse them. Section 3 discusses
the large-scale variations in latency over time and geography, and Section 4
examines delay variation on access links. Section 5 presents our examination
of load-induced queueing delay. Finally, Section 6 discusses related work and
Section 7 concludes the paper.

2 Datasets and methodology
The datasets underlying our analysis are the publicly available dataset from
Measurement Lab (M-Lab), specifically the Network Diagnostic Tool (NDT)
data [2], combined with packet header traces from access aggregation links of

Measuring Latency Variation in the Internet 33

Table 1: Total tests per region and year (millions).

Reg. 2010 2011 2012 2013 2014 2015

AF 0.65 0.63 0.79 0.72 0.76 0.57
AS 7.79 7.45 6.55 5.75 5.83 4.57
EU 35.00 31.12 27.96 22.40 21.23 16.82
NA 11.70 8.51 7.90 7.01 7.06 8.00
SA 2.68 1.73 2.83 2.94 2.05 1.26
OC 1.33 1.33 0.79 0.55 0.65 0.57

Total 59.22 50.81 46.87 39.43 37.60 31.79

an internet service provider. This section presents each of the datasets, and the
methodology we used for analysis.

2.1 The M-Lab NDT data
The M-Lab NDT is run by users to test their internet connections. We use
the 10-second bulk transfer from the server to the client, which is part of the
test suite. When the test is run, the client attempts to pick the nearest server
from the geographically distributed network of servers provided by the M-Lab
platform. The M-Lab servers are globally distributed4, although with varying
density in different regions.

The server is instrumented with the Web100 TCP kernel instrumentation
[3], and captures several variables of the TCP state machine every 5ms of the
test. Data is available from early 2009, and we focus on the six year period
2010–2015, comprising a total of 265.8 million test runs. Table 1 shows the
distribution of test runs for the years and regions we have included in our
analysis.

Since the NDT is an active test, the gathered data is not a representative
sample of the traffic mix flowing through the internet. Instead, it may tell us
something about the links being traversed by the measurement flows. Looking
at links under load is interesting, because some important effects can be
exposed in this way, most notably bufferbloat: Loading up the link causes
any latent buffers to fill, adding latency that might not be visible if the link is
lightly loaded. This also means that the baseline link utilisation (e.g., caused
by diurnal usage patterns) become less important: an already loaded link can,
at worst, result in a potentially higher baseline latency. This means that the
results may be biased towards showing lower latency variation than is actually
seen on the link over time. But since we are interested in establishing a lower
bound on the variation, this is acceptable.

For the base analysis, we only exclude tests that were truncated (had a
total run time less than 9 seconds). We use the TCP RTT samples as our data

4See https://www.measurementlab.net/status/ for more information on the server
placements.

https://www.measurementlab.net/status/

34 Paper I

Tim
e

Figure 1: Delays computed from the TCP connection setup.

points, i.e., the samples computed by the server TCP stack according to Karn’s
algorithm [4], and focus on the RTT span, defined as the difference between
the minimum and maximum RTT observed during a test run. However, we
also examine a subset of the data to assess what impact the choice of min and
max observed RTT has on the data when compared to using other percentiles
for each flow (see Section 3.3).

2.2 The access aggregation link data
The second dataset comes from two access aggregation links of an internet
service provider. The links aggregate the traffic for about 50 and 400 clients,
respectively, and connect them to the core network of the service provider.
The traffic was captured passively at different times distributed over an eight-
month period starting at the end of 2014. The average loads on the 1Gbps
links were, respectively, about 200 and 400Mbit/s during peak hours. This
dataset is an example of real internet traffic, since we are not generating any
traffic.

We analyse the delay experienced by the TCP connection setup packets
in this dataset. The TCP connection setup consists of a three-way handshake
with SYN, SYN+ACK, and ACK packets, as illustrated in Figure 1.

For the purpose of this paper, we study the client side of connections
made to the public internet. That is, we study the path from the client, over
the access link, to the measured aggregation link. This allows us to examine
increased delays due to excess queuing in consumer equipment, and ensures
that the path we measure is of known length.

We examine the data for outgoing connections, i.e., connections that are
initiated from the access side and connect to the public internet, which means
we compute the round-trip delay between the SYN+ACK packet and the
first ACK packet in the three-way handshake. The variation in these delay
values is likely to be caused by queueing, since connection endpoints normally

Measuring Latency Variation in the Internet 35

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

RTT span
Minimum RTT
Maximum RTT

(a)

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Africa
Asia
Europe
N. America
S. America
Oceania

(b)

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(c)

Figure 2: RTT values computed over individual flows. (a) Min and max RTT and the
span between them, for all flows. (b) Distribution of per-flow RTT span per continent
(2015 data). (c) Distribution of per-flow RTT span per country in Africa (2015 data for
countries with n > 10, 000).

36 Paper I

respond immediately. We also compute the instantaneous load at each sample
and examine the correlation between delay and load for a few clients.

2.3 Sources of latency variation
Naturally, the observed latency variation can have several causes [5]. These in-
clude queueing delay along the path, delayed acknowledgements, transmission
delay, media access delays, error recovery, paths changing during the test and
processing delays at end-hosts and intermediate nodes. For the main part of
our analysis, we make no attempt to distinguish between different causes of
latency variation. However, we note that latency variation represents latency
that is superfluous in the sense that it is higher than the known attainable
minimum for the path. In addition, we analyse a subset of each dataset to
examine to what extent queueing latency is a factor in the observed latency
variation.

We believe that the chosen datasets complement each other nicely and allow
us to illuminate the subject from different angles, drawing on the strengths of
them both. The NDT dataset, being based on active measurements, allows
us to examine connections that are being deliberately loaded, and the size of
the dataset allows us to examine temporal and geographic trends. The access
network dataset, on the other hand, has smaller scope but the examined path is
known; and so we can rule out several sources of delay and be more confident
when interpreting the results.

3 Latency variation over time and geography
In this section, we analyse the M-Lab NDT dataset to explore geographic
differences, and also look at the development of the RTT span over time. For
an initial overview, Figure 2a shows the distribution of the RTT span in the
whole M-Lab NDT dataset, along with the minimum and maximum RTTs it
is derived from. This shows a significant amount of extra latency: two thirds
of samples exceed 100ms of RTT span, with the 95th percentile exceeding
900ms.

3.1 Geographic differences
Figure 2b shows the RTT span distributed geographically per continent for the
2015 data. This shows a significant difference between regions, with the median
differing by more than a factor of two between the best and the worst region.
Looking within these regions, Figure 2c shows the per-country distributions
within Africa. Here, the heavy tail of latencies above one second affects
as much as 20% of the samples from the country with the highest latency.
These high latencies are consistent with previous studies of African internet
connections [6]. The data for Europe (omitted due to space constraints) shows
that the difference among European countries is of the same magnitude as the
difference among continents.

Measuring Latency Variation in the Internet 37

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Min

Span
2010
2011
2012
2013
2014
2015

(a)

0 10 20 30 40 50
Mbps

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

2010
2011
2012
2013
2014
2015

(b)

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

North
America

Africa

2010
2011
2012
2013
2014
2015

(c)

Figure 3: Development over time of per-flow latency and throughput in the NDT
dataset. (a) Min RTT and RTT span, per year. (b) Per-flow average throughput, per
year. (c) The development in latency span over time for North America and Africa.

38 Paper I

3.2 Development over time
Figure 3a shows the minimum RTT and the RTT span for each of the years in
the dataset. While the minimum RTT has decreased slightly over the years, no
such development is visible for the span. This is striking when compared to
the development in throughput, which has increased consistently, as shown in
Figure 3b. Some of this increase in average throughput may be due to other
factors than increase in link capacity (e.g. protocol efficiency improvements).
Even so, the disparity is clear: while throughput has increased, RTT span has
not decreased, and the decrease in minimum RTT is slight.

Looking at this development for different continents, as shown in Figure 3c,
an increase in latency span over the years is seen in North America while
Africa has seen a consistent, but small, reduction in latency span over time.
This latter development is most likely due to developments in infrastructure
causing traffic to travel fewer hops, thus decreasing the potential sources of
extra latency.

3.3 Different measures of latency span
The way the NDT dataset is structured makes the per-flow min and max RTT
values the only ones that are practical to analyse for the whole dataset. To
assess what effect this choice of metric has on the results, we performed a
more detailed analysis for a subset of the data. Figure 4a shows the latency
span distribution for the data from August 2013 when using percentiles of the
per-flow RTT measurements ranging from 90 to 99 in place of the max. We
see that in this case the median measured RTT span drops to between 151ms
and 204ms, from 250ms when using the max — a drop of between 17% and
40%. It is not clear that the max is simply an outlier for all flows; but for those
where it is, our results will overestimate the absolute magnitude of the RTT
span. However, the shape of the distribution stays fairly constant, and using
the max simply leads to higher absolute numbers. This means that we can still
say something about trends, even for those flows where the max RTT should
be considered an outlier.

4 Latency variation in the access network
In this section we analyse the latency variation of TCP 3-way handshakes in
the access network dataset. Figure 4b shows the distribution of the per-client
RTT variation, computed as the span between the per-client minimum delay
and the respective percentiles of samples to that client. To ensure that we do
not mistakenly use a too low minimum delay value, only handshakes which
did not have any SYN+ACK retransmissions are considered when computing
the minimum.

For about half of the client population covered by the link shown in
Figure 4b, delay increases substantially over the minimum at times. For
example, 20% of the clients experience increased delays of more than about

Measuring Latency Variation in the Internet 39

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Percentile
100th
99th
98th
95th
90th

(a)

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Min-50th pctile span
Min-90th pctile span
Min-95th pctile span
Min-99th pctile span

(b)

0 200 400 600 800 1000
Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

2010
2011
2012
2013
2014

(c)

Figure 4: (a) Latency span for all flows in August 2013 when using different percentiles
to determine the max RTT. NDT dataset. (b) Client side round trip delay percentiles
over all clients relative to the minimum delay. A full day of the first aggregation link
in the access network dataset. (c) Distribution of the magnitude of detected queueing
delay, per year. Flows with detected queueing latency, NDT dataset.

40 Paper I

80ms, at least 5% of the time. The second link shows similar behaviour, but
has more clients that are affected by increased delay.

Another interesting feature of the data is that there is a significant difference
in the magnitude of the latency span depending on which percentile of latency
measurements one looks at. That is, if we consider the per-user 99th percentile
of latency rather than the 95th, suddenly more than half the users experience
latency variations in excess of 100ms for the first link, and more than 80%
for the second link. This underscores the fact that delay spikes can be a very
transient problem, but one that is of significant magnitude when it does occur.

Comparing with the NDT dataset, the analysis of the access link data
shows a lower frequency of latency variation, as well as a lower magnitude of
the variation when it does occur. However, both datasets show that significant
latency variation occurs for a considerable fraction of users. We attribute the
difference in magnitude to the difference in measurement methods: the NDT
measurements are taken while the link is deliberately loaded, while not all
measurements from the access network are taken from saturated links.

5 Examining queueing latency
As mentioned in Section 2.3, latency variations can have many causes, and
without having insight into the network path itself it can be difficult to
identify which are the most prevalent. However, experience from more
controlled environments (such as experiments performed to evaluate AQM
algorithms [7]) suggests that queueing delay can be a significant source. Due
to the magnitude of the variation we see here, we conjecture that this is also
the case in this dataset. To examine this further, in this section we present an
analysis of the queueing delay of a subset of the traffic in both datasets. We aim
to perform a conservative analysis, and so limit ourselves to tests for which it
is possible to identify queueing latency with high certainty.

5.1 Latency reductions after a drop
Our analysis is based upon a distinct pattern, where the sample RTT increases
from the start of a flow until a congestion event, then sharply decreases
afterwards. An example of this pattern is seen in Figure 5. This pattern is due
to the behaviour of TCP: The congestion control algorithm will increase its
sending rate until a congestion event occurs, then halve it. If a lot of packets are
queued when this happens, the queue has a chance to drain, and so subsequent
RTT samples will show a lower queueing delay. Thus, it is reasonable to
assume that when this pattern occurs, the drop in RTT is because the queue
induced by the flow dissipates as it slows down. So when we detect this sharp
correlation between a congestion event and a subsequent drop in RTT, we can
measure the magnitude of the drop and use it as a lower bound on queueing
delay.

Measuring Latency Variation in the Internet 41

0 2 4 6 8 10

Test duration (s)

0

50

100

150

200

RT
T

sa
m

pl
e

(m
s)

Figure 5: Example of the drop in RTT after a congestion event. The red cross marks
the congestion event.

We limit the analysis to flows that have exactly one congestion event, and
spend most of its lifetime being limited by the congestion window. Addi-
tionally, we exclude flows that are truncated or transfer less than 0.2 MB of
data. For the remaining flows, we identify the pattern mentioned above by
the following algorithm:

1. Find three values: first_rtt, the first non-zero RTT sample; cong_rtt, the
RTT sample at the congestion event; and cong_rtt_next, the first RTT
sample after the event that is different from cong_rtt.

2. Compute the differences between first_rtt and cong_rtt and between
cong_rtt and cong_rtt_next. If both of these values are above 40ms,5
return the difference between cong_rtt and cong_rtt_next.

We add a few minor refinements to increase the accuracy of the basic
algorithm above:6

1. When comparing first_rtt and cong_rtt, use the median of cong_rtt and
the two previous RTT samples. This weeds out tests where only a single
RTT sample (coinciding with the congestion event) is higher than the
baseline.

2. When comparing cong_rtt and cong_rtt_next, use the minimum of the
five measurements immediately following cong_rtt_next. This makes
sure we include cases where the decrease after the congestion event is
not instant, but happens over a couple of RTT samples.

3. Compute the maximum span between the largest and smallest RTT
sample in a sliding window of 10 data samples over the time period
following the point of cong_rtt_next. If this span is higher than the drop
in RTT after the congestion event, filter out the flow.

5The threshold is needed to exclude naturally occurring variation in RTT samples from the
detection. We found 40ms empirically to be a suitable conservative threshold: It is the lowest
value that did not result in a significant number of false positives.

6The full code and dataset is published at https://www.cs.kau.se/tohojo/
measuring-latency-variation/

https://www.cs.kau.se/tohojo/measuring-latency-variation/
https://www.cs.kau.se/tohojo/measuring-latency-variation/

42 Paper I

By applying the algorithm to the data from 2010 through 20147, we iden-
tified a total of 5.7 million instances of the RTT pattern, corresponding to
2.4% of the total number of flows. While this is a relatively small fraction of
the flows, in this section we have aimed to be conservative and only pick out
flows where we can algorithmically identify the source of the extra latency
as queueing delay with a high certainty. This does not mean, however, that
queueing delay cannot also be a source of latency variation for other flows.

Figure 4c shows the distribution of the magnitude of the detected queueing
delay. We see that this follows a similar heavy-tailed distribution as the total
latency variation. In addition, of those tests that our algorithm identifies as
experiencing self-induced queueing, a significant percentage see quite a lot of
it: 80% is above 100ms, and 20% is above 400ms. We see a downward trend in
the queueing delay magnitude from 2010 to 2012/13, with a slight increase in
2014.

Based on our analysis of this subset of the whole dataset, we conclude that
(i) queueing delay is present in a non-trivial number of instances and that (ii)
when it does occur, it is of significant magnitude.

5.2 Delay correlated with load
A network is more likely to exhibit queueing delay when it is congested. Thus,
delay correlated with load can be an indication of the presence of queueing
delay. When analysing the access network dataset, we identified several cases
where strong correlation between delay and load existed. In this section we
look at two examples of this behaviour.

Figures 6a and 6b show the correlation between client side delay and the
instantaneous outbound load during the 200ms just preceding each delay
sample. The sample period is one hour during peak time (20.30–21.30).

For the first client, we see two clusters of delay/load values, indicating
two kinds of behaviour. There is one cluster just under a performance ceiling
of 1Mbit/s, but with increased round-trip delays up to almost 200ms. This
behaviour clearly indicates a saturated uplink where the upstream bottleneck
limits the throughput and induces queueing latency. The other cluster is
centred around about 0.8 Mbit/s and 80ms increase in round-trip delay. This
indicates an equilibrium where the outbound capacity is not the primary
bottleneck, and so doesn’t induce as much queueing delay. In addition to these
clusters, there are some scattered data points up to just over 3 s increase in
round-trip delay (not all of which are visible on the figure). The second client
is clearly limited by a low uplink capacity, resulting in very large delays —
up to about 1.5 s, which is consistent with the low capacity resulting in large
queue drain times.

Together, the behaviour of these two client links (along with additional
clients we have examined but not included here) clearly show that load-induced

7The Measurement Lab dataset was restructured in the middle of 2015, making it difficult to
apply the detailed analysis for the 2015 data. For that reason, we have not included 2015 in these
results.

Measuring Latency Variation in the Internet 43

0 100 200 300 400 500
Delay (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

 (M
bp

s)

(a)

0 500 1000 1500 2000
Delay (milliseconds)

0.0

0.1

0.2

0.3

0.4

0.5

Ra
te

 (M
bp

s)

(b)

Figure 6: Delay and instantaneous outbound rate for two clients in the access network
dataset. The histograms on the axes show the marginal distributions for the rate and
delay samples.

44 Paper I

queueing delay is one source of the latency variation we have observed in the
analysis of the whole dataset. According to the service provider, the access
network otherwise does not have the amount of buffering needed for the
delays we see in our measurements, pointing to large buffers in consumer
equipment as the likely culprit.

5.3 Discussion
The analysis presented in this section indicates that excess queueing latency
(i.e., bufferbloat) is indeed a very real and routinely occurring phenomenon.
While we do not claim to have a means of accurately quantifying bufferbloat
in all instances, we have sought to compensate for the lack of accuracy by
erring on the side of caution in identifying bloat. And the fact that signs of
bufferbloat so readily appears in both datasets constitutes a strong indicator
that bufferbloat is indeed prevalent in real networks.

Another finding is that in the cases where bufferbloat does appear, it tends
to be significant: most often on the order of several hundreds of milliseconds.
This means that when bufferbloat does appear, it is quite noticeable and a
considerable inconvenience for the end-user.

6 Related work
Several other studies have looked at the latency characteristics of internet
traffic. These fall roughly into three categories: studies based on large-scale
active measurements, studies based on targeted active measurements of a more
limited scope, and passive measurements performed at various vantage points
in the network. In this section we provide an overview of each of these
categories in turn.

6.1 Large-scale active measurements
The speedtest.net measurement tool and the Netalyzr test suite are popular
performance benchmark tools in wide use. Canadi et al [8] perform a study
based on 54 million test runs from the former which shows very low baseline
(unloaded) latencies, but considers neither latency variation nor development
over time. Kreibich et al [9] base their study on 130,000 tests from the latter,
and show queueing latency on the order of hundreds of milliseconds, but does
not consider differences over time or between regions.

Another approach to large-scale active measurements is taken by the BIS-
Mark and SamKnows measurement platforms, both of which provide instru-
mented gateways to users. A study based on this data by Sundaresan et al [10]
measures baseline and under-load latency and shows significant buffering in
head-end equipment. Chetty et al [6] also use BISMark data (as well as other
sources) to measure broadband performance in South Africa. Consistent with
our results for this continent, they find that latencies are generally high, often
on the order of several hundred milliseconds.

Measuring Latency Variation in the Internet 45

Another large-scale active measurement effort is the Dasu platform [11],
which is a software client users install on their machines. This study does not
focus on latency measurements, but it includes HTTP latency figures which
indicate a large regional variation, not unlike what we observe.

Finally, the M-Lab Consortium has studied ISP interconnections [12] using
the same data as we use. However, this study only considers aggregate latency
over large time scales.

6.2 Targeted active measurements
Dischinger et al [13] and Choy et al [14], both use active probing of residential
hosts to measure network connections. The former study finds that queueing
delay in the broadband equipment is extensive, while the latter finds that a
significant fraction of users experience too high latency to run games in the
cloud. Bischof et al [15] perform a slightly different type of measurements,
piggy-backing on the BitTorrent protocol, and find a majority of the users
see median last-mile latency between 10 and 100ms, with the 95th percentile
of seeing several hundred milliseconds. A similar conclusion, but specifically
targeted at assessing queueing latency, is reached in [16], which estimates that
10% of users experience a 90th percentile queueing latency above 100ms.

Another type of targeted active measurements are performed by clients
under the experimenters’ control to examine the access network. These types
of experiments are performed by, e.g., Jiang et al [17] and Alfredsson et al [18]
to measure bufferbloat in cellular networks. Both studies find evidence of
bufferbloat on the order of several hundred ms.

6.3 Passive measurements
Several studies perform passive measurements of backbone or other high-speed
links between major sites [19–21]. They generally find fairly low and quite
stable latencies, with the backbone link experiencing latencies dominated by
the speed of light, and the others generally seeing median latencies well below
100ms. Jaiswal et al [21] additionally measure RTT variations and find that
the median variation is around 2–300ms and the 95th percentile variation is
on the order of several seconds. In addition, Pathak et al [22] perform passive
measurement of latency inflation in MPLS overlay networks and find that
inflation is common, mostly due to path changes in the underlying tunnels.

Another technique for passive measurements consists of taking captures
at the edge of a network and analysing that traffic. Aikat et al [23] and All-
man [24] both employ this technique to analyse the RTT of TCP connections
between hosts inside and outside the network where the measurement is per-
formed. Both studies analyse the latency variation, Aikat et al finding it to be
somewhat higher than Allman.

Another vantage point for passive measurements is at edge networks. Such
studies are performed by Vacirca et al [25] and Maier et al [26] for mobile and
residential networks, respectively. The former study finds that RTT can vary

46 Paper I

greatly over connections, while the latter finds that the baseline latency of the
TCP handshake is dominated by the client part.

Finally, Hernandez-Campos and Papadopouli [27] compares wired and
wireless traffic by means of passive packet captures. They find that wireless
connections experience a much larger RTT variation than wired connections
do.

7 Conclusions
We have analysed the latency variation experienced by clients on the internet
by examining two complementary datasets from active measurement tests
and from traffic captures from an ISP. In addition, we have analysed a subset
of the data to attempt to determine whether load-induced queueing delay in
the network can be part of the reason for the large variations. Based on our
analysis, we conclude:

• Latency variation is both common and of significant magnitude, both
within single connections and between connections to the same client.
This indicates that it has a large potential to negatively affect end-user
perceived performance.

• The worst affected clients see an order of magnitude larger variation
than the least affected, and the choice of per-client percentile for the
measured latency significantly affects the resulting conclusions. This
indicates that latency spikes are transient and non-uniformly distributed.

• While throughput has increased over the six years we have examined,
both minimum latency and latency variation have remained stable,
and even increased slightly. This indicates that the improvements in
performance afforded by the development of new technology are not
improving latency.

• We find that in both datasets load-induced queueing delay is an im-
portant factor in latency variation, and quite significant in magnitude
when it does occur. This indicates that load-induced queueing does in
fact contribute significantly to the variation we see in overall latency
behaviour.

8 Acknowledgements
We wish to thank Matt Mathis and Collin Anderson for suggesting we look at
the Measurement Lab dataset, and for their helpful comments and technical
expertise. We also wish to thank Henrik Abrahamsson for the use of his tools
for computing instantaneous load from the access link data.

This work was in part funded by The Knowledge Foundation (KKS)
through the SIDUS READY project.

Measuring Latency Variation in the Internet 47

References
[1] A. Singla et al., “The internet at the speed of light,” in 13th ACMWorkshop

on Hot Topics in Networks. ACM, 2014.

[2] “NDT test methodology,” 2015. https://github.com/ndt-project/ndt/
wiki/NDTTestMethodology

[3] M. Mathis, J. Heffner, and R. Raghunarayan, “TCP Extended Statistics
MIB,” RFC 4898 (Proposed Standard), Internet Engineering Task Force,
May 2007.

[4] V. Paxson et al., “Computing TCP’s Retransmission Timer,” RFC 6298
(Proposed Standard), Internet Engineering Task Force, Jun. 2011.

[5] B. Briscoe et al., “Reducing internet latency: A survey of techniques and
their merits,” IEEE Communications Surveys Tutorials, vol. 18, no. 99, pp.
2149–2196, 2014.

[6] M. Chetty et al., “Measuring broadband performance in South Africa,”
in 4th Annual Symposium on Computing for Development. ACM, 2013.

[7] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the
Bad and the WiFi: Modern AQMs in a residential setting,” Computer
Networks, vol. 89, pp. 90–106, Oct. 2015.

[8] I. Canadi, P. Barford, and J. Sommers, “Revisiting broadband perform-
ance,” in Proceedings of the 2012 Internet Measurement Conference. ACM,
2012, pp. 273–286.

[9] C. Kreibich et al., “Netalyzr: illuminating the edge network,” in Pro-
ceedings of the 10th ACM SIGCOMM conference on Internet measurement.
ACM, 2010, pp. 246–259.

[10] S. Sundaresan et al., “Broadband internet performance: a view from the
gateway,” in ACM SIGCOMM computer communication review, vol. 41.
ACM, 2011, pp. 134–145.

[11] M. A. Sánchez et al., “Dasu: Pushing experiments to the internet’s edge.”
in Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), 2013, pp. 487–499.

[12] M. Lab, “ISP interconnection and its impact on consumer internet per-
formance,” Measurement Lab Consortium, Tech. Rep., October 2014.

[13] M. Dischinger et al., “Characterizing residential broadband networks,” in
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 43–56.

[14] S. Choy et al., “The brewing storm in cloud gaming: A measurement
study on cloud to end-user latency,” in 11th annual workshop on network
and systems support for games. IEEE Press, 2012, p. 2.

https://github.com/ndt-project/ndt/wiki/NDTTestMethodology
https://github.com/ndt-project/ndt/wiki/NDTTestMethodology

48 Paper I

[15] Z. S. Bischof, J. S. Otto, and F. E. Bustamante, “Up, down and around
the stack: ISP characterization from network intensive applications,”
ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp.
515–520, 2012.

[16] C. Chirichella and D. Rossi, “To the moon and back: are internet buf-
ferbloat delays really that large?” in 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2013, pp.
417–422.

[17] H. Jiang et al., “Tackling bufferbloat in 3g/4g networks,” in Proceedings
of the 2012 Internet Measurement Conference. ACM, 2012, pp. 329–342.

[18] S. Alfredsson et al., “Impact of TCP congestion control on bufferbloat in
cellular networks,” in IEEE 14th International Symposium and Workshops
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2013.

[19] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”
ACM SIGCOMM Computer Communication Review, vol. 32, no. 3, pp.
75–88, 2002.

[20] C. Fraleigh et al., “Packet-level traffic measurements from the Sprint IP
backbone,” IEEE Network, vol. 17, no. 6, pp. 6–16, 2003.

[21] S. Jaiswal et al., “Inferring TCP connection characteristics through passive
measurements,” in INFOCOM 2004, vol. 3. IEEE, 2004, pp. 1582–1592.

[22] A. Pathak et al., “Latency inflation with MPLS-based traffic engineering,”
in ACM conference on Internet measurement. ACM, 2011, pp. 463–472.

[23] J. Aikat et al., “Variability in TCP round-trip times,” in ACM conference
on Internet measurement. ACM, 2003, pp. 279–284.

[24] M. Allman, “Comments on bufferbloat,” ACM SIGCOMM Computer
Communications Review, vol. 43, no. 1, pp. 31–37, January 2013.

[25] F. Vacirca, F. Ricciato, and R. Pilz, “Large-scale RTT measurements from
an operational UMTS/GPRS network,” in First International Conference
on Wireless Internet. IEEE, 2005.

[26] G. Maier et al., “On dominant characteristics of residential broadband
internet traffic,” in ACM conference on Internet measurement. ACM,
2009, pp. 90–102.

[27] F. Hernandez-Campos and M. Papadopouli, “Assessing The Real Im-
pact of 802.11 WLANs: A Large-Scale Comparison of Wired and Wire-
lessTraffic,” in 14th IEEE Workshop on Local and Metropolitan Area Net-
works. IEEE, 2005.

IIPaper

Reprinted from

Modern AQMs in a Residential Setting

The Good, the Bad and the WiFi

Computer Networks, vol 89, pg 90–106, October 2015

“I’m British; I know how to queue.”

Arthur Dent, The Hitchhiker’s Guide to the Galaxy

The Good, the Bad and the WiFi
Modern AQMs in a Residential Setting

Toke Høiland-Jørgensen, Per Hurtig and Anna Brunstrom
{toke.hoiland-jorgensen, per.hurtig, anna.brunstrom}@kau.se

Abstract

Several new Active Queue Management (AQM) and hybrid AQM/fairness
queueing algorithms have been proposed recently. They seek to ensure
low queueing delay and high network goodput without requiring para-
meter tuning of the algorithms themselves. However, extensive exper-
imental evaluations of these algorithms are still lacking. This paper
evaluates a selection of bottleneck queue management schemes in a test-
bed representative of residential internet connections of both symmetrical
and asymmetrical bandwidths as well as WiFi. Latency under load and
the performance of VoIP and web traffic patterns are evaluated under
steady state conditions. Furthermore, the impact of the algorithms on
fairness between TCP flows with different RTTs, and also the transient
behaviour of the algorithms at flow startup is examined. The results
show that while the AQM algorithms can significantly improve steady
state performance, they exacerbate TCP flow unfairness. In addition, the
evaluated AQMs severely struggle to quickly control queueing latency
at flow startup, which can lead to large latency spikes that hurt the per-
ceived performance. The fairness queueing algorithms almost completely
alleviate the algorithm performance problems, providing the best balance
of low latency and high throughput in the tested scenarios. However,
on WiFi the performance of all the tested algorithms is hampered by
large amounts of queueing in lower layers of the network stack inducing
significant latency outside of the algorithms’ control.

1 Introduction
Ensuring low latency, and in particular consistently low latency, in modern
computer networks has become increasingly important over the last several
years. As more interactive applications are deployed over the general internet,
this trend can be expected to continue. Several factors can contribute to
unnecessary latency (for a survey of such factors, see [1]); in this paper we

51

52 Paper II

focus on the important factor of excessive queueing delay, particularly when
the network is congested.

Recent re-emergence of interest in the problem of congestion-induced
excessive queueing latency has, to a large extent, been driven by the efforts of
the bufferbloat community [2, 3], which has also worked to develop technical
solutions to mitigate it. In short, bufferbloat is a term used to describe the
effect that occurs when a network bottleneck is congested and large buffers fill
up and do not drain, thus inducing a persistent queueing delay that can be much
larger than the path round-trip time. Since the inception of the bufferbloat
community effort, more and more people in both academia and industry are
becoming aware of the problem; and several novel queue management schemes
have been proposed to combat the problem.

These new queue management schemes seek to provide both low latency
and high goodput, without requiring the extensive parameter tuning that was
needed for earlier schemes like Random Early Detection (RED) [4]. The
schemes include new Active Queue Management (AQM) algorithms, such as
Controlled Delay (CoDel) [5] and Proportional Integral controller Enhanced
(PIE) [6]. In addition, the older Adaptive RED (ARED) [7] algorithm has
seen revival attempts for this use.

Most previous evaluations of these algorithms have been based on simula-
tion studies. We extend this by comparing more algorithms (seven in total),
both pure AQM algorithms and fairness queueing scheduling algorithms. In
addition, we examine more traffic scenarios and application behaviours. Fi-
nally, we provide an updated examination of actual running code (the Linux
kernel, version 3.14), which, due to the wide availability and open nature
of the code, can be considered a real-world reference implementation for the
algorithms. For all experiments, we provide access to the experimental data,
and the tools to replicate them, online.8

We present our analysis in three separate parts: the Good, the Bad and the
WiFi. First, the good: We compare steady state behaviour of the algorithms
in a mix of traffic scenarios designed to be representative of a residential
internet setting: measuring latency under load, and real-world application
performance of VoIP and HTTP applications, with minimal tuning of the
algorithms applied. The tested algorithms perform significantly better than
FIFO queueing in these scenarios.

Second, the bad: We test the impact of the AQMs on fairness between TCP
flows of unequal RTT, and analyse the transient behaviour of the algorithms
when flows start up. We compare the goodput of four flows with RTTs
varying almost two orders of magnitude. We find that the AQM algorithms
exacerbate the tendency of unfairness between the TCP flows compared to
FIFO queueing. We also look at the development of measured delay over
time when competing TCP flows start up and start to claim bandwidth at
the bottleneck link. This analysis shows that two of the AQM algorithms
(PIE and CoDel) have severe issues in quickly controlling the induced delay,

8https://www.cs.kau.se/tohojo/good-bad-wifi/.

https://www.cs.kau.se/tohojo/good-bad-wifi/

The Good, the Bad and the WiFi 53

showing convergence times of several seconds with very high delay spikes
when the flows start up.

Finally, the WiFi: Recognising that wireless networks play an increasing
role in modern residential networks, we evaluate the algorithms in a setup
where a WiFi link constitutes part of the tested path. We find that the al-
gorithms fail to limit latency in this scenario, and it is quite clear that more
work is needed to effectively control queueing in wireless networks.

The analysis of these three aspects of AQM behaviour contributes to a
better understanding of residential network behaviour. It points to several
areas that are in need of further evaluation and more attention from algorithm
developers. One possible solution that has been deployed with promising
results [8] is fairness queueing, exemplified by algorithms such as Stochastic
Fairness Queueing (SFQ) [9] or the hybrid AQM/fairness queueing of fq_-
codel [10]. Hence, we have included three such algorithms in our evaluations
along with the AQM algorithms. We find that they give vastly superior per-
formance when compared with both FIFO queueing and the tested AQM
algorithms, making the case that these types of algorithms can play an import-
ant role in the efforts to control queueing delay.

The rest of the paper is structured as follows: Section 2 discusses related
work. Section 3 presents the experimental setup and the tested path charac-
teristics, and Section 4 describes the tested algorithms. Section 5 presents the
measurements of steady-state behaviour and their results, while Section 6 does
the same for the experiments with fairness and transient behaviour. Section 7
covers WiFi and finally, Section 8 concludes the paper and outlines future
work.

2 Related work
A large number of AQM algorithms have been proposed over the last two
decades, employing a variety of approaches to decide when to drop packets;
for a comprehensive survey, see [11]. Similarly, several variants of fairness
queueing have been proposed, e.g. [12–14]. We have limited our attention to
those algorithms proposed as possible remedies to the bufferbloat problem
over the last several years. This section provides an overview of previous work
on evaluating these algorithms and their effectiveness in combating bufferbloat.

The first evaluations of the AQM algorithms in question were performed
by their inventors, who all publish extensive simulation results comparing
their respective algorithms to earlier work [5–7]. All simulations performed by
the algorithm inventors examine queueing delay and throughput tradeoffs in
various straight-forward, mainly bulk, traffic scenarios. Due to being published
at different times and with different simulation details, the results are not easily
comparable, but overall, the authors all find that their proposed algorithms
offer tangible improvements over the previously available algorithms.

In an extensive ns2-based simulation study of AQM performance in a
cable modem setting [15], White compares CoDel, PIE and two hybrid
AQM/fairness queueing algorithms, SFQ-CoDel and SFQ-PIE. Various traffic

54 Paper II

scenarios were considered, including gaming, web and VoIP traffic as well as
bulk file transfers. The simulations focus specifically on the DOCSIS cable
modem hardware layer, and several of the algorithms are adjusted to better
accommodate this. For instance, the PIE algorithm has more auto-tuning
intervals added, and the fairness queueing algorithms have the number of
queues decreased. The study finds that all three algorithms offer a marked im-
provement over FIFO queueing. The study concludes that PIE offers slightly
better latency performance than CoDel but has some issues with bulk TCP
traffic. Finally, the study finds that SFQ-CoDel and SFQ-PIE offers very
good performance in many cases, but notes some issues in specific scenarios
involving many BitTorrent flows.

Khademi et al [16] have performed an experimental evaluation of CoDel,
PIE and ARED in a Linux testbed. The experiments focus on examining the
algorithms at a range of parameter settings and measure bulk TCP transfers
and the queueing delay experienced by the packets of the bulk TCP flows
themselves. The paper concludes that ARED is comparable to PIE and CoDel
in performance.

Rao et al [17] perform an analysis of the CoDel algorithm combined with
a simulation study that compares it to the SFQ-CoDel algorithm. The paper
concludes that SFQ-CoDel for many scenarios outperforms plain CoDel.

Järvinen and Kojo [18] perform a simulation study comparing PIE and
CoDel to their own modified RED variant called HRED, focusing on transient
load behaviour. They conclude that the CoDel algorithm does not scale with
load, that PIE performs worse generally, but scales better, and that the HRED
algorithm performs and scales better at transient loads.

Cai et al [19] employ fairness queueing to alleviate throughput unfairness
between stations in a wireless network by applying it in a centrally controlled
shaper. They find that this scheme can significantly reduce unfairness.

Finally, Park et al [20] perform a simulation study of CoDel on a wireless
access point and concludes that, correctly configured, it can lower latency
while keeping throughput high.

Our work expands on the above by (a) including more tested algorithms,
also incorporating a variety of fairness queueing algorithms; by (b) testing a
wider variety of traffic scenarios, in particular incorporating realistic applic-
ation behaviour and looking at fairness issues and transient behaviour; and
by (c) performing comprehensive, carefully designed tests of real-world imple-
mentations of the algorithms on actual networking hardware, while making
the full data set and implementation available for scrutiny. We believe that
together these factors make our evaluation an important contribution towards
understanding the behaviour of modern queue management algorithms. In
particular, we believe it is important to evaluate the algorithms in real-world
implementations, to obtain a realistic view of their behaviour free from the
idealisations imposed by purely simulation-based studies.

The Good, the Bad and the WiFi 55

3 Experimental methodology
The experiments compare the selected queue management schemes in a variety
of realistic scenarios mimicking a residential internet connection setting. This
section presents the setup and methodology used to test the algorithms.

Client Server

Ethernet Rate limited bottleneck

Bottleneck routerBottleneck router

Latency inducer

Figure 1: Physical test setup.

The tests are run in a controlled environment consisting of five regular
desktop computers, as shown in Figure 1. The computers are equipped with
Intel 82571EB ethernet controllers, and networked together in a daisy-chain
configuration. This corresponds to a common dumbbell scenario, with the
individual flows established between the endpoint nodes serving as multiple
senders. The middle machine adds latency by employing the dummynet emula-
tion framework [21]. The bottleneck routers employ software rate limiting
(through the tbf rate limiter [22]) to achieve the desired bottleneck speeds. A
separate control network is used to configure the test devices and orchestrate
tests. All five computers run Debian Wheezy. The latency inducer runs the
stock kernel (version 3.2) with the dummynet module added, while the others
have had the kernel replaced with a vanilla kernel version 3.14.4. For the WiFi
tests, a wireless link is added to the testbed (see Section 7).

The test setup is designed to correspond to a residential internet connec-
tion scenario. All tests are run with the bottleneck in three configurations: a
symmetrical link at 100 Mbps, a symmetrical link at 10 Mbps, and an asym-
metrical link with 10/1 Mbps download/upload speeds. The base RTT is set
to 50 ms, corresponding to a mid-range internet latency. All TCP goodput
values are measured at the application level; the bandwidth utilisation of the
flows that measure latency is not counted.

The test computers are set up to avoid the most common testing pitfalls, as
documented by the bufferbloat community in a best practices document [23].
This means that all hardware offload features are turned off, the kernel Byte
Queue Limits have been set to a maximum of one packet and the kernel is
compiled with the highest possible clock tick frequency (1000 Hz). All of
these adjustments serve to eliminate sources of latency and queueing other than
those induced by the algorithms themselves, for instance by preventing the
network driver and hardware from queueing packets outside the control of the
queue management algorithms. We have chosen this best-case configuration
for our tests, because the object of interest is the behaviour of the algorithms

56 Paper II

themselves, not the interactions between different layers of the operating sys-
tem network stack and/or hardware. While turning off offloads and lowering
the Byte Queue Limit settings can in some cases adversely affect achievable
throughput, we have verified that our testbed has sufficient computational
resources that this is not an issue at the speeds we are testing. All tests are run
with both the CUBIC and New Reno TCP congestion control algorithms,
but the results are only included here with the (for Linux) default CUBIC
algorithm.

The tested queue management schemes are installed before the bottleneck
link, in both the upstream and downstream directions. In a real residential
setting this corresponds to service providers having the algorithms installed
at their head end termination equipment, as well as in customer equipment.
Many devices deployed in service provider networks do not run Linux, and
so availability of an algorithm implementation in Linux does not necessarily
translate directly to deployability today. However, since we are interested
in assessing the potential benefits the algorithms can provide if deployed, we
believe that testing in a scenario that grants the algorithms as much control of
the bottleneck queues as possible is the right thing to do. We hope this can help
make the case for implementing smarter queue management at the customer-
facing side of operator networks. Until such implementations appear, Linux
provides an intermediate queueing device that allows downstream shaping in
the home gateway, which can help get queueing under control (with some
limitations) [24].

The benchmarking tools used for the performance tests are the Netperf
tool [25] for TCP traffic, the D-ITG tool [26] for generating VoIP streams and
the cURL library for web tests [27]. The tests are run by means of a testing
harness, Flent [28], which is available as open source software.

4 Tested algorithms
Seven queue management schemes, or qdiscs in Linux vocabulary, have been
selected, including the default FIFO queueing mechanism. These represent
algorithms that seek to function well with their default parameters at a wide
variety of operating conditions in internet scale networks. While the parameter
sensitivity of the algorithms is important, studies of this has been performed
elsewhere (in e.g. [16]). Additionally, we believe performance at the default
parameter setting is an important part of a queueing mechanism’s overall
performance (the difficulty of configuring RED has been cited as a major
reason for its limited deployment [5]). For this reason, we focus on comparing
the algorithm behaviours to each other with their default parameters. The
drafts describing both the new AQMs (CoDel and PIE) include parameter
settings known to work well in a wide variety of cases, and these values are
also the defaults in the Linux implementation. We keep these defaults except
where our test scenario is known to stray from the default operating range, or
where no defaults exist.

The Good, the Bad and the WiFi 57

All algorithms whose sole dropping mechanism is queue overflow (i.e.,
the pure packet schedulers), we have configured to have the same total queue
length. This ensures that the scheduling behaviour is tested, rather than just the
effects of different queue lengths. The lowest default value for these algorithms
is used as the queue length, which is the SFQ default of 127 packets. This
value is used at 1 and 10 Mbps; at 100 Mbps a longer queue size is required
for TCP to fill the pipe. Thus, the queue size is increased to 1000 packets (the
pfifo_fast default) at 100 Mbps.

Being available in mainline Linux, all the tested algorithms are available on
a wide variety of platforms, and have been tested on a wide variety of hardware.
In particular, they are part of the OpenWrt embedded router project, showing
that running them on low-powered devices is quite feasible.

The algorithm parameters are summarised in Table 1 and the rest of this
section describes each algorithm in turn.

Parameter 1 Mbps 10 Mbps 100 Mbps

pfifo_fast
txqueuelen 127 127 1000

ARED
min 1514 12500 125000
bandwidth 1 Mbps 10 Mbps 100 Mbps
max 3028 - -

PIE
target 20 ms 20 ms 20 ms
tupdate 30 ms 30 ms 30 ms
limit 1000 1000 1000

CoDel
target 13 ms 5 ms 5 ms
interval 100 ms 100 ms 100 ms
limit 1000 1000 1000

SFQ
limit 127 127 1000

fq_codel
target 13 ms 5 ms 5 ms
interval 100 ms 100 ms 100 ms
limit 10240 10240 10240

fq_nocodel
limit 127 127 1000
interval 100 s 100 s 100 s

Table 1: Qdisc parameters. Parameters that are kernel defaults are shown in italics.
Some values are omitted here for brevity; see the published dataset and configuration
scripts for details.

58 Paper II

4.1 pfifo_fast
The pfifo_fast qdisc is the current default in Linux and consists of a three-tier
priority queue with simple FIFO semantics. In the tests only one priority is
used, so the qdisc can be viewed as a simple FIFO queue.

4.2 ARED
ARED is a dynamic configuration scheme for the RED AQM algorithm.
It adjusts the RED max dropping probability based on the observed queue
length, around a target point midway between the configured minimum and
maximum queue sizes.

Following the configuration guidelines given in [7], the minimum queue
size is set to half the target delay (queueing time being converted to a queue size
by the link speed) and the max queue size is set to three times the minimum
queue size. This makes the algorithm control point oscillate around the
target delay size midway between the two values. A target delay of 20 ms is
used, corresponding to the default for the PIE algorithm, which features a
similar probabilistic drop scheme. However, at 1 Mbps, this would result in
unachievable target queue size lengths of less than one Maximum Transmission
Unit (MTU). To avoid this, at 1 Mbps the minimum and maximum queue
size parameters are set to one and two MTUs respectively.

4.3 PIE
PIE is based on a traditional proportional integral controller design. It infers
queueing delay from the instantaneous queue occupancy and the egress rate.
The drop probability is then adjusted periodically (at a configurable interval
defaulting to 30 ms) from the variations in the queueing delay over time,
combined with a configured target delay, which defaults to 20 ms.

When PIE updates the drop probability, it does so based on the instant-
aneous estimated queueing delay and how it compares to the reference delay
parameter and to the previously measured delay, respectively. Two parameters,
α and β, control the weighing between the impact of these two differences on
the calculated drop probability. PIE contains an auto-tuning feature which
adjusts the values of α and β based on the measured level of congestion (ex-
pressed by the drop probability), setting the parameters higher when the
network is more congested; this makes the algorithm react faster when the
congestion level is higher. The Linux implementation has three levels of this
auto-tuning, while more have been added in the version of PIE incorporated
in the DOCSIS standard [29].

4.4 CoDel
CoDel seeks to minimise delay by directly measuring the time packets spend
in the controlled queue. If this time exceeds a configured target for longer than
a configured interval, packets are dropped at a rate computed by the interval

The Good, the Bad and the WiFi 59

divided by the square root of the number of previous drops, until the queueing
delay sinks below target again. The previous drop rate is then saved and the
algorithm will start dropping again at the same level as before if it re-enters
the drop state within a short time after having left it.

While the default values of 5 ms for target and 100 ms for interval are cited
by the authors to work well for a large range of internet-scale bandwidths
and RTTs, one known exception in the current implementation is when the
minimum attainable queueing time (i.e., the transmission time of one packet)
is higher than the target. In this instance, target should be set to the queueing
time of one packet; thus, for the 1 Mbps tests, CoDel’s target is raised to 13
ms.

4.5 SFQ
SFQ is a fairness queueing algorithm that employs a hashing mechanism
to divide packets into sub-queues, which are then served in a round-robin
manner. By default, packets are hashed on the 5-tuple defined by the source
and destination IP addresses, the layer 4 port numbers (if available) and the IP
protocol number, salted with a random value chosen at startup. The number
of hash buckets (and thus the maximum number of active sub-queues) is
configurable and defaults to 1024.

4.6 fq_codel
The fq_codel algorithm [10] is a hybrid algorithm consisting of a flow queueing
scheduler which employs the CoDel AQM on each sub-queue. The flow
queueing mechanism is a subtle optimisation of fairness queueing for sparse
flows: A sub-queue will be temporarily prioritised when packets first arrive
for it, and once it empties, a sub-queue will be cleared from the router state.
This means that queues for which packets arrive at a sufficiently slow rate for
the queue to drain completely between each new arrival, will perpetually stay
in this state of prioritisation. The exact rate for this to happen depends on
load, traffic and link characteristics, but in practice it means that many packets
which impact overall interactivity (such as TCP connection negotiation and
DNS lookups) get priority, leading to reduced overall application latency.

Additionally, fq_codel uses a deficit round-robin scheme when dequeuing
packets from the sub-queues. This allows a queue with small packets to
dequeue several packets each time a queue with big packets dequeues one, thus
approximating byte-based fairness rather than packet-based fairness between
queues. The granularity of the deficit mechanism can be set by a quantum
parameter which defaults to one MTU.

4.7 fq_nocodel
The term ’fq_nocodel’ is used to refer to the fq_codel algorithm configured
so as to effectively disable the CoDel AQM (by setting the CoDel target
parameter to be 100 seconds). This configuration is included to examine the

60 Paper II

performance of the flow queueing mechanism of fq_codel, without having the
CoDel algorithm operate on each queue. Since the queue overflow behaviour
of fq_codel is very CPU-intensive,9 this operating mode is not viable for
deployment, but can be used in a controlled testbed environment with suitably
over-provisioned CPU resources for the configured bandwidth.

5 The Good: steady-state behaviour
Steady-state behaviour is the most commonly assessed characteristic of queue
management algorithms, and this is also the subject area of most analytical
models (e.g. [30]). In this section we present three experiments examining the
steady-state behaviour of the tested algorithms: one that looks at algorithm
behaviour under synthetically generated load, and two that tests the impact
of algorithms on performance of real-world application traffic. Each of the
steady-state tests are run for 140 seconds (to minimise the impact of transient
behaviour at flow start-up time) and repeated 30 times.

5.1 The Real-time Response Under Load test
The Real-Time Response Under Load (RRUL) test was developed by the
bufferbloat community [31] specifically to stress-test networks and weed out
undesirable behaviour. It consists of running four concurrent TCP flows in
each direction, while simultaneously measuring latency using both UDP and
ICMP packets. The goal is to saturate the connection fully, and the metrics
of interest are TCP goodput, and the extra latency induced under load. The
latter we define as the average observed latency under a full test run, minus
the base path RTT. The RRUL test is also used as background traffic for the
other steady-state tests below.

5.1.1 RRUL results

The results for the RRUL test are shown in Figure 2 as latency-goodput
ellipsis graphs. The use of this type of graph was pioneered for visualising
bandwidth/latency tradeoffs by Winstein in [32], and deliberately flips the
latency axis to make better values be “up and to the right”. For the 10/1 Mbps
link, in figure 2c, both upstream and downstream behaviours are shown on
the same plot, reusing the same latency values for both. The results show that
the default FIFO queue predictably gives a high induced latency, but with high
goodput. An exception is on the asymmetrical 10/1 Mbps link, where the
downstream goodput suffers slightly. This is due to ACKs being dropped in
the upstream direction, preventing the downstream flows from fully utilising

9When an overflow condition is detected, fq_codel linearly searches all available queues to find
the longest one from which to drop a packet. This has a large impact, mainly by using up a lot of
CPU cache. The implementors found this to have acceptable performance as long as it is used as a
fallback mechanism to avoid overflow rather than as the main drop mechanism. Thus, changing
the implementation to a more efficient drop mechanism would be advisable for a deployment
scenario.

The Good, the Bad and the WiFi 61

01020304050607080
Mean induced latency (ms)

82

84

86

88

90

92

94

96

M
ea

n
 T

CP
 g

oo
dp

ut
 (M

bi
t/

s)

pfifo_fast

ared

pie

codel

sfq

fq_nocodel

fq_codel

(a) 100/100 Mbps link speed, one direction shown.

020406080100
Mean induced latency (ms)

8.8

8.9

9.0

9.1

9.2

9.3

9.4

9.5

9.6

M
ea

n
 T

CP
 g

oo
dp

ut
 (M

bi
t/

s)

pfifo_fast

ared

pie codel

sfq

fq_nocodel

fq_codel

(b) 10/10 Mbps link speed, one direction shown.

050100150200250300
Mean induced latency (ms)

0

2

4

6

8

10

M
ea

n
 T

CP
 g

oo
dp

ut
 (M

bi
t/

s)

pfifo_fast

pfifo_fast

ared

ared

pie

pie

codel

codel

sfq

sfq

fq_nocodel

fq_nocodel

fq_codel

fq_codel

(c) 10/1 Mbps link speed, both directions shown.

Figure 2: (a and b) The RRUL test results, showing the median values and 1-σ ellipses
of the per-test-run mean goodput and mean induced latency. (c) As (a and b), but
showing both upstream and downstream traffic, re-using the same latency values.

62 Paper II

the available bandwidth, and the behaviour is consistent with previous studies
of TCP on asymmetric links [33]. The same effect is apparent for the ARED
AQM, which achieves an even lower goodput, but at the same time it achieves
a lower latency.

All the AQMs achieve lower queueing delay than FIFO queueing, and the
newer AQMs fare better goodput-wise at the low bandwidth. The difference
between the steady-state behaviours of the three AQMs can be explained as
follows: ARED and PIE are both designed to control the average queue length
around a set point. ARED controls the drop probability based on how the
average queue length deviates from the desired set-point, scaling the drop
probability rapidly as the queue fluctuates in a rather narrow interval around
the target. This causes it to be fairly aggressive, achieving low delays, but at a
cost in throughput. This is particularly apparent at 1 Mbps, where the size of
the interval is a single packet.

PIE, on the other hand, adjusts its drop probability based on both the
queue’s deviation from the set-point and the previous delay values, and the drop
probability is adjusted less often. Together, this leads to a smoother oscillation
around the target, and a less aggressive behaviour. At 100 Mbps, however, PIE
shows a more aggressive drop behaviour than at lower bandwidths. This is
most likely due to the fact that the built-in auto-tuning of PIE (which scales
the drop probability adjustment parameters α and β with the observed drop
probability) is too narrow in scope. The auto-tuning consists of a lookup
table for drop probabilities in ranges starting from 0.1%, with lower drop
probabilities resulting in a slower adjustment. However, everything below
0.1% is treated the same, and since the steady-state drop probability of a 100
Mbps link is markedly lower than 0.1%, this results in the algorithm reacting
more aggressively than it does at lower bandwidths.

Finally, CoDel uses its target parameter as a lower bound on how much
latency to tolerate before reacting by dropping packets. This means that the
set-point does not function as an average around which to control the queues,
as the other algorithms do. Instead, the queue is controlled to an average
somewhat above the target. The auto-tuning of the interval from the drop
count then serves to find the right drop rate, and CoDel oscillates in and out
of drop mode in the steady state. This leads to a steady-state performance
midway between ARED and PIE (excluding the 100 Mbps PIE behaviour), as
seen from the figure.

The highest goodput of all the configured queue management schemes,
however, is achieved by the AQM-less fairness queueing algorithms, with
fq_codel lagging a tiny bit behind. This indicates that with the flow isola-
tion offered by fairness queueing, additional drop signals from an AQM hurt
throughput with no gain in terms of lower queueing delay for competing
flows. However, this is offset by the fact that fq_codel keeps the TCP window
significantly smaller than fq_nocodel, meaning that the TCP flows themselves
experience less queueing latency. This can be important for interactive applica-
tions that also transfer enough data to induce queueing, such as screen sharing
applications or adaptive rate video streaming.

The Good, the Bad and the WiFi 63

At 100 Mbps link speed, all three fairness queueing algorithms show
comparable (and very close to zero) induced latency. However, at the lower
bandwidths where the time to transmit single packets can be noticeable, it is
clearly seen how it is beneficial that the flow queueing mechanism prioritises
the sparse flows measuring latency, resulting in practically zero induced latency.
The high variance of the fq_nocodel algorithm at the lowest speed results from
a hash collision between a latency measurement flow and a data flow, resulting
in one of the test runs exhibiting high latency.

5.2 VoIP test
The VoIP test seeks to assess the performance of voice traffic running over
a bottleneck managed by each of the queue management schemes. This is
done by generating synthetic VoIP-like traffic (an isochronous UDP flow at
64 Kbps) in the upstream direction, and measuring the end-to-end one-way
delay and packet loss rate. The test is performed with one competing TCP
flow in the same direction as the VoIP flow, as well as with the full RRUL test
as background traffic on the link.

5.2.1 VoIP results

The results for the VoIP tests are shown in Figure 3. The graphs show the
CDF of the one-way delay samples of the VoIP traffic with a 200 ms sampling
interval. The accompanying TCP goodput results are omitted for brevity, but
the relative goodput for each algorithm mirror those from the RRUL test
discussed above. For latency, the results mirror those of the RRUL tests: new
AQM algorithms give a marked improvement over FIFO queueing, but with
their respective latency values varying depending on the link bandwidth and
cross traffic. And as before, the fairness queueing give the best latency results.
However, it is interesting to note that the effects of hash collisions in the queue
assignments are apparent in the RRUL results at 1 Mbps, heavily influencing
the performance of SFQ and fq_nocodel. CoDel and PIE also show a long tail
of delay values at 1 and 10 Mbps for RRUL, corresponding to the transient
delay (see Section 6.2).

Loss statistics are shown in Table 2. From these, it is quite apparent that
the AQMs would render a VoIP conversation completely hopeless at 1 Mbps,
even with only a single competing flow. With RRUL as cross traffic it is even
worse, with the FIFO queueing also showing high loss rates. Additionally,
ARED shows loss in excess of 25%, explaining its very low delay values. For all
tests, the flow isolation of the fairness queueing algorithms effectively protect
the VoIP flows from loss, with the exception of SFQ and fq_codel at 1 Mbps
with RRUL as cross-traffic. This can be explained by the fact that at this speed,
the time to transmit a packet is a significant component of the latency, adding
enough delay for the VoIP flow to build a bit of queue and hence suffer loss.

64 Paper II

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

0 10 20 30 40 50 60 70
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(a) 1 stream, 100/100 Mbps.

0 10 20 30 40 50 60 70 80 90
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(b) RRUL, 100/100 Mbps.

0 20 40 60 80 100 120 140
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(c) 1 stream, 10/10 Mbps.

0 20 40 60 80 100
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(d) RRUL, 10/10 Mbps.

0 100 200 300 400 500 600 700 800
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(e) 1 stream, 10/1 Mbps.

0 50 100 150 200 250 300 350
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(f) RRUL, 10/1 Mbps.

Figure 3: VoIP test results. The CDF plots show the distribution of induced one-way
delay over all samples from the VoIP streams.

The Good, the Bad and the WiFi 65

Table 2: VoIP average packet loss over all test runs. A ’–’ indicates no packet loss.

1 stream cross traffic
1 Mbps (%) 10 Mbps (%) 100 Mbps (%)

pfifo_fast 0.88 0.10 –
ARED 7.95 0.45 0.002
PIE 2.75 0.04 0.002
CoDel 6.46 0.02 0.002
SFQ – – –
fq_-
nocodel

– – –

fq_codel – – –

RRUL cross traffic
1 Mbps (%) 10 Mbps (%) 100 Mbps (%)

pfifo_fast 8.54 0.20 0.032
ARED 26.33 0.61 0.019
PIE 14.03 0.44 0.016
CoDel 10.60 0.19 0.004
SFQ 0.42 – –
fq_-
nocodel

– – –

fq_codel 0.04 – –

5.3 Web test
The web test measures the web browsing performance of a user accessing
the web through a bottleneck equipped with the tested queue management
schemes.

To retrieve a web site, web browsers commonly first lookup the site host
name, then retrieve the main HTML document, and finally retrieve all the
resources associated with the document over several concurrent connections.
Since web browsers continue to evolve at a rapid pace, and so constitute
somewhat of a moving target, we have chosen to focus on this network-centric
behaviour as a way to approximate real web behaviour. We simply define the
page fetch time as the total time to retrieve all objects of each web site. This
metric also has the added benefit of being reproducible without relying on a
specific implementation of a particular browser or rendering engine. We have
chosen the well-tested and widely used cURL library [27] as the basis for our
test client [34], which mimics this fetching behaviour in a reproducible way (a
feature we were not able to find in any existing web benchmarking tools).

Two web pages of different sizes are mirrored on the test server: the Google
front page (56KB data in a total of three requests) and the front page of the
Huffington Post web site (3 MB in a total of 110 requests).10 We believe these

10The test pages are henceforth referred to as ’Google’ and ’Huffpost’, respectively.

66 Paper II

two sites are well-suited to represent opposite ends of the web scale: a small
interactive page and a large and complex site with many elements to be fetched.

The tested web site is repeatedly fetched throughout the duration of the
test run. The metric of interest is the page fetch time mentioned above. The
test is run both with the RRUL test as background traffic, and with a single
TCP flow in the upstream direction, competing with the HTTP requests going
to the web server. The latter is included to show the importance of having
timely delivery of the HTTP requests, and how failure to achieve this can
negatively impact the entire web browsing performance.

5.3.1 Web results

The results for the web tests are shown in Figures 4 and 5. For each test run,
the average fetch time is computed, and the mean and standard deviation of
these averages over the test repetitions are displayed on the result graphs.

The results show that managing delay greatly impacts web browsing per-
formance in a positive way. However, one exception is the ARED algorithm
at low bandwidths: here, performance is both highly variable and sometimes
even worse than the FIFO queue. This is caused by a too aggressive drop beha-
viour, which causes SYN packets in the HTTP requests to be lost, requiring
retransmission. This effect is most pronounced on the simpler Google page,
where the total fetch time is more affected by timely delivery of the HTTP
request.

SYN losses are also the reason that the FIFO queue shows worse behaviour
with a single TCP flow as cross traffic than with the full RRUL test. We
attribute this to the fact that with the RRUL test, a lot of the queue space in
the upstream direction is occupied by small ACK packets, which take less time
to put on the wire. When the queue is full and a full-sized packet is at the
front of the queue, it stays full for the entire time it takes to dequeue that one
packet. This means that the smaller the packets, the shorter the average time
before a new queue space opens up, and hence the better the chance that the
SYN packet gets a space in the queue upon arrival.

Another interesting feature of the result is that any queue management
significantly improves this important real-world application performance.
The performance differences between the AQM algorithms and the fairness
queueing schemes are in many cases less pronounced than in the other tests,
since all the algorithms achieve sufficient latency reduction to get the fetch
time very close to the unloaded case. For those cases where the fetch time is
significantly higher than the unloaded case, the performance differences are
more pronounced. The odd case out is Huffpost at 10 Mbps with the RRUL
test, where the fairness queueing algorithms show worse performance than
CoDel and PIE. This is most likely because the Huffpost site consists of many
objects that need to be fetched: They are each fairly small and so will be sent
in a single burst of packets. The bursts go into the single queues back-to-back,
whereas per-flow fairness imposed by the fairness queueing algorithms split
them up causing a longer total completion time.

The Good, the Bad and the WiFi 67

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5

1.0

1.5

2.0

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(a) 100/100 Mbps, 1 TCP flow.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(b) 10/10 Mbps, 1 TCP flow.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0

5

10

15

20

25

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(c) 10/1 Mbps, 1 TCP flow.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(d) 100/100 Mbps, RRUL.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(e) 10/10 Mbps, RRUL.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0

5

10

15

20

25

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(f) 10/1 Mbps, RRUL.

Figure 4: HTTP mean fetch times for Google. The upper row shows results for the
tests with a single TCP flow as cross traffic, while the lower row shows results for tests
with the RRUL test as cross traffic.

68 Paper II

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(a) 100/100 Mbps, 1 TCP flow.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5

1.0

1.5

2.0

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(b) 10/10 Mbps, 1 TCP flow.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0

2

4

6

8

10

12

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(c) 10/1 Mbps, 1 TCP flow.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(d) 100/100 Mbps, RRUL.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(e) 10/10 Mbps, RRUL.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0

1
2
3
4
5
6
7
8
9

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(f) 10/1 Mbps, RRUL.

Figure 5: HTTP mean fetch times for Huffpost. The upper row shows results for the
tests with a single TCP flow as cross traffic, while the lower row shows results for tests
with the RRUL test as cross traffic.

The Good, the Bad and the WiFi 69

5.4 Discussion
The steady state test results show that a marked improvement is possible by
managing the bottleneck queues. All three AQM algorithms show consistent
improvements over FIFO queueing, although the older ARED algorithm
exhibits a tendency to drop too aggressively, as does PIE at 100 Mbps.

Together, the steady state results underscore the benefit of deploying AQM
in place of the prevalent FIFO queues of today’s networks; this is in broad
agreement with previous studies. It is worth noting, however, that ARED does
require quite a bit of parameter tuning compared to the two other algorithms.
In particular, parameters need to be set corresponding to the link bandwidth,
which makes the algorithm somewhat more complex to deploy than the
others.

The analysis of the fairness queueing algorithms show very impressive
performance. At no point are the fairness queueing algorithms out-performed
by the AQM algorithms, and in most cases fairness queueing outperforms
AQM by a large margin. For VoIP traffic in particular, the flow isolation
prevents the VoIP flows from experiencing a loss rate that, at the lowest band-
width, would make any conversation completely untenable. This indicates that
various forms of fairness queueing have an important role to play in dealing
with queueing-induced latency. The sparse flow optimisation of the fq_codel
flow queueing algorithm provides a marked additional improvement on top of
regular fairness queueing, especially at lower bandwidths.

6 The Bad: fairness and transient behaviour
Two aspects of queue management are often overlooked when evaluating
queue management algorithms: the algorithms’ influence on inter-flow fairness,
and the transient behaviour exhibited when flows start up. In this section
we present our analysis of these two aspects of the behaviour of the tested
algorithms.

6.1 Inter-flow fairness
It is well-known that fairness queueing algorithms can improve flow fairness
characteristics [35], and indeed it is a design goal for such algorithms (hence
the term fairness queueing). However, fairness characteristics of pure AQM
algorithms are not well understood. In this section, we investigate fairness
behaviour of all the tested algorithms.

We do this by means of the RTT-fairness test, which examines the RTT fair-
ness properties of TCP under each of the queueing algorithms. It is well-known
that the TCP goodput is affected by the RTT [36], because the congestion
control algorithm reacts to feedback that is on an order of the RTT. While TCP
CUBIC is designed to improve RTT fairness [37], some RTT fairness issues
still remain [38]. The purpose of the RTT-fairness test is to evaluate whether
the queue management schemes make this effect worse, or whether they help

70 Paper II

alleviate it. The test consists of running four concurrent TCP streams from
the client to the server, each with a different RTT value (10, 50, 200 and 500
ms respectively), and measuring the aggregate TCP goodput of each stream.
To minimise the impact of transient effects from the initial TCP ramp-up even
at the long base RTT, the test length is increased to 600 seconds for this test.
As expected, the RTT fairness characteristics of the CUBIC and New Reno
congestion controls differ. However, this is only a difference in magnitude,
and does not influence the relative performance of the algorithms compared
to each other. We have thus omitted the Reno results for brevity.

6.1.1 RTT Fairness results

Figure 6 shows the test results for the RTT fairness tests. The figure shows
Jain’s fairness index [39] calculated over the goodput values of the four com-
peting flows, as well as the total goodput of each of the four flows. For each
test repetition, the total goodput value for each flow is used; all graphs show
the mean and standard deviation over the test repetitions.

The AQM algorithms exhibit a tendency to worsen the RTT-unfairness of
TCP, compared to the FIFO queue. This can be clearly seen by comparing the
throughput of the flows with the highest latency between the algorithms. This
is due to several factors: Firstly, the added queueing latency of the FIFO queue
serves to even out the RTT differences of the different flows. Furthermore,
packet traces reveal that the AQM algorithms cause the long-RTT flows to
experience loss at an even rate throughout the test, whereas FIFO queueing
results in bursty losses, from which TCP recovers better. Finally, the AQMs
tune themselves to the shorter flow RTTs to control the queue, hurting the
flows with longer RTT which share the queue. Together, these effects combine
to lower the fairness rating of the AQM algorithms.

As expected, and in contrast to the AQM results, the fairness queueing
algorithms achieve very good fairness results. The pure schedulers with no
AQM achieve perfect fairness, which is to be expected from their round-robin
scheduling behaviour. The fair results of fq_codel is worse than for the other
scheduling algorithms, for the same reason as stated above: CoDel fails to tune
itself to the very short and very long RTTs in this test. This results in the
bandwidth distribution of the flows getting skewed, leading to worse fairness
results. At 100 Mbps, the schedulers fail to exhibit perfect fairness behaviour,
because at this bandwidth their total queue space is too small for the flows
with long RTTs to effectively use the available bandwidth.

One peculiar feature of the results is that at 1 Mbps, FIFO queueing,
ARED and fq_codel all show lower aggregate throughput for the 10 ms RTT
flow than for the flow with a 50 ms RTT. This has different explanations
for each of the algorithms. For FIFO queueing, this happens because the
short-RTT flow initially ramps up its congestion window, then suffers a series
of consecutive congestion events which causes it to lower its window to a level
it never recovers from. For ARED, the high drop rate causes the low-RTT flow
to suffer a series of consecutive retransmission timeouts, causing throughput
to drop. For fq_codel, the short flow tends to suffer retransmission timeouts,

The Good, the Bad and the WiFi 71

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

pf
if

o_
fa

st

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fa
ir

ne
ss

 in
de

x

100Mbit 10Mbit 1Mbit

(a) Fairness index.

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s0

10

20

30

40

50

60

M
ea

n
ba

nd
w

id
th

 (M
bi

ts
/s

)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

(b) 100/100 Mbps link speed.

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s0

1

2

3

4

5

6

M
ea

n
ba

nd
w

id
th

 (M
bi

ts
/s

)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

(c) 10/10 Mbps link speed.

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s

10
 m

s
50

 m
s

20
0

m
s

50
0

m
s0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
ba

nd
w

id
th

 (M
bi

ts
/s

)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

(d) 10/1 Mbps link speed.

Figure 6: The RTT fairness test results. (a) Jain’s fairness index as computed from the
goodput values of each flow. (b–d) The mean goodput of each of the four TCP streams
for each bandwidth.

72 Paper II

because its BDP is so small (312 bytes) that it rarely has enough outstanding
data to trigger fast retransmit when a packet is dropped by CoDel in the middle
of a window, but because it has to wait its turn in the round-robin scheduler
with the other flows, each packet experiences enough queueing latency to
trigger the drops. For both ARED and fq_codel, this also causes a drop in total
throughput, with ARED losing just over 10%, while fq_codel loses around
5%. All other algorithms have identical total throughput for each bandwidth.

6.2 Transient behaviour
The transient behaviour of queue management algorithms is often overlooked
in evaluations that all too often focus mainly or exclusively on steady state
behaviour. Analytical models of transient behaviour are almost entirely non-
existent, but also simulation-based and experimental evaluations often overlook
this. However, transient behaviour can be vital for the overall perceived
performance of the network: an algorithm that keeps latency low in the steady
state but fails every time a transient event occurs makes for a quite bad overall
user experience. In this section we investigate an extreme case of transient
behaviour: what happens to the measured delay when the four bi-directional
TCP streams of the RRUL test start up.

6.2.1 Transient behaviour results

Figure 7 shows the results of the transient behaviour tests. This shows simply
a time sequence graph of the measured latency over the first 25 seconds of an
RRUL test run. The values are point-wise averages over the 30 iterations.

The results show that both CoDel and PIE have severe problems keeping
the delay low when the TCP flows start up. At the lower bandwidths, PIE
has the worst behaviour, with delay sky-rocketing and even temporarily being
higher than for the FIFO queue in the 10 Mbps tests. CoDel fares somewhat
better relative to PIE at the lower bandwidths, but significantly worse at 100
Mbps. They both take from several seconds up to more than 20 seconds
to get latency back under control, which is a significant impact on the user
experience and can easily lead to an almost perpetual state of high delays.

These delay spikes in the traffic managed by CoDel and PIE have a common
cause: The four simultaneous flows in slow start are simply overwhelming
the algorithm control mechanisms, which do not tune the drop rate quickly
enough to the new environment. For both algorithms, part of the reason is
that the algorithms do not engage at all within the first 100 ms (PIE has a
burst allowance of 100 ms, and CoDel’s interval is 100 ms), at which point the
queue is already substantial.

Additionally, for CoDel it is noticeable that the time it takes to get the
delay under control goes up with the link bandwidth. This corresponds to
the fact that the rate at which CoDel increases its drop rate is linear, and
proportional to the inverse of the link speed [40]. So in other words, the
initial spikes in latency seen by the CoDel-controlled flows occur because

The Good, the Bad and the WiFi 73

CoDel’s drop rate is increased too slowly, and at a rate that is dependent on
link bandwidth.

Similarly, for PIE, the drop probability increase is capped to two percentage
points in each update cycle, in order to protect single TCP flows in slow start
from experiencing timeouts [41]. In our case of four simultaneous flows
starting up, this results in a marked delay in getting latency under control.
Interestingly, PIE contains another optimisation that will increase the drop
probability rapidly when the absolute delay exceeds 250 ms, which corresponds
to the size of the delay spike we see at 10 Mbps. At 100 Mbps, the relative
lack of a delay spike for PIE corresponds to the more aggressive behaviour PIE
exhibits at this bandwidth, as noted earlier.

The ARED algorithm fares significantly better and shows almost no delay
spike but instead jumps smoothly to the steady state delay values. The fairness
queueing algorithms simply assign the newly started flows their own queues,
and so they do not impact the latency measurements at all, even in the slow
start phase.

6.3 Discussion
The fairness results are an example of a metric where the AQM algorithms
actually exhibit worse behaviour than FIFO queueing. The fairness aspect is
often overlooked in evaluations of AQM algorithms, but can be an important
factor especially when considering deploying an AQM algorithm on a link
likely to see traffic with highly varying RTT.

Likewise, the transient results reveal a potentially quite severe limitation
of the new AQM algorithms, which can take several seconds to get delay back
under control after a significant change in conditions occurs. An obvious real-
world example of such behaviour is web browsing, where a browser initiating
a large page download over several simultaneous connections easily can result
in behaviour similar to that seen here.

Together, these two aspects highlight areas that need more attention in
future AQM research. Additionally, both are areas where the flow isolation
provided by fairness queueing algorithms proves to be a very effective remedy.
This makes the case for having such algorithms play an important role in
managing queueing delay.

7 The WiFi: adding a wireless link
An increasing share of traffic in the home goes via wireless connections. This
can influence the behaviour of queue management algorithms by moving
the bottleneck to the WiFi link. If this happens, then even if the queue
management algorithms are applied to the WiFi link, their behaviour can
differ because the characteristics of the physical link is different (most notably,
WiFi protocols include retransmit and packet aggregation features which can
both affect latency and queueing). To test this scenario, we have added a WiFi

74 Paper II

pfifo_fast ared pie codel

sfq fq_nocodel fq_codel

0 5 10 15 20 25
Time (s)

60

80

100

120

140

La
te

nc
y

(m
s)

(a) 100/100 Mbps link speed.

0 5 10 15 20 25
Time (s)

50

100

150

200

La
te

nc
y

(m
s)

(b) 10/10 Mbps link speed.

0 5 10 15 20 25
Time (s)

200

400

600

800

La
te

nc
y

(m
s)

(c) 10/1 Mbps link speed.

Figure 7: The transient behaviour of the algorithms. The plots show the delay develop-
ment over time for the first 25 seconds of the RRUL test. Each line is the (point-wise)
mean of the test runs for each algorithm.

The Good, the Bad and the WiFi 75

link to the testbed, and run the same sets of tests in this modified scenario.
The modified test setup is shown in Figure 8.

Client

Server

Ethernet Rate limited bottleneck

Bottleneck routerBottleneck router

Latency inducer

oxygenoxygen

Figure 8: WiFi test setup

We use an Ubiquiti Nanostation M5 access point running OpenWrt 14.07
and using the ath9kWiFi driver. The client is a laptop running the same Debian
version and kernel as the rest of the testbed. The laptop is equipped with an
Intel WiFi Link 5100 card using the iwlwifi driver. The test is performed using
802.11n on an empty channel in the 5 GHz frequency spectrum. Rather than
place the laptop and access point right next to each other, we have placed them
on opposite sides of a wall. We believe this setup approximates a residential
usage scenario reasonably well, with the exception that the clear channel is
likely to lead to better results than in, say, a crowded apartment building with
dozens of WiFi networks. We apply the queue management algorithms to
both sides of the WiFi link as well as to the bottleneck link as before.

On this WiFi setup we have re-run all tests designed to test a single link
characteristic, i.e. everything except the fairness test. However, for the lower
bandwidths, the WiFi link does not constitute a bottleneck, and so we see
no meaningful difference in the results.11 For this reason, we have omitted
those results and only include the results for the 100 Mbps bottleneck link.
Furthermore, as can be seen in the following, the RRUL test results show such
high induced latency that the transient spikes seen in the previous section are
absent for the WiFi results. This, too, has thus been omitted.

In the following, we present the results of the WiFi evaluation, in the same
order as the previous sections.

7.1 The RRUL test
The RRUL results are shown in Figure 9. A couple of interesting features are
clearly visible on this graph. Firstly, the algorithms show the same ordering
of latency behaviour, with FIFO being worst, followed by PIE and CoDel,
the ARED and the fairness queueing algorithms. However, the magnitude
of induced latency is different, with the lower bound being around 100 ms.
We attribute this to queueing in lower layers (i.e. in the driver and hardware)

11Looking at the detailed behaviour over time, we see a small number of delay spikes for the
low-bandwidth tests, which we attribute to WiFi retransmissions. However, these spikes are so
few in number (and so small that they only show up on the fairness queueing results) that they do
not impact the aggregate behaviour of the algorithms.

76 Paper II

50100150200250300350
Mean induced latency (ms)

0

10

20

30

40

50

60
M

ea
n

 T
CP

 g
oo

dp
ut

 (M
bi

t/
s)

pfifo_fast

pfifo_fast

ared

ared

pie

pie

codel

codel

sfq

sfq

fq_nocodel

fq_nocodel

fq_codel

fq_codel

Figure 9: RRUL results for the WiFi setup. The top part is downstream traffic, the
bottom part upstream.

which the queue management algorithms cannot control. Linux’s Byte Queue
Limits [42] mechanism is designed to deal with this in Ethernet drivers,
however no such mechanism exists for WiFi, and it is doubtful whether the
same mechanism can be applied, due to the aforementioned packet aggregation
and retransmit features.

The second noteworthy feature of the RRUL results is that upstream
throughput drops to almost nothing, even though the link nominally has
the same bandwidth in both directions. This is a consequence of air-time
unfairness, and for this particular combination of devices and drivers, it is
hurting the upstream direction. Testing of other devices in the bufferbloat
community has shown that this can just as well be seen in the other direction.

7.2 VoIP traffic
The VoIP WiFi results are shown in Figure 10. They show that when there is
only a single flow as competing traffic, the queue management schemes exhibit
almost completely identical behaviour, confirming the view that the induced
delay is in layers below the qdisc layer where the algorithms cannot control it.
When the RRUL test is used as cross traffic, the delay results match those from
the RRUL test itself. The loss results (in Table 3) show a small loss ranging
between 0.2% and 0.5% for one stream, and very high loss percentages for

The Good, the Bad and the WiFi 77

the AQMs with the RRUL test, corresponding to the low effective upstream
bandwidth.

Table 3: VoIP average packet loss over all WiFi test runs

VoIP packet loss
1 stream (%) RRUL (%)

pfifo_fast 0.34 16.66
ARED 0.13 5.30
PIE 0.18 27.52
CoDel 0.19 18.56
SFQ 0.47 1.71
fq_nocodel 0.17 1.59
fq_codel 0.22 2.64

7.3 Web results
The web results from the WiFi tests are shown in Figure 11. These show that
once again, for one upload stream, the result is determined by something other
than the active queue management algorithm. The relative positions of the
different algorithms with the RRUL test as cross traffic match those for the
wired tests at 100 Mbps, except that PIE and CoDel’s disadvantage is more
pronounced.

7.4 Discussion
The WiFi results clearly show that the queue management algorithms fail to
effectively control the bandwidth on a WiFi bottleneck link. This is most
likely due to extra queueing at lower layers in the network stack. Additionally,
other issues are apparent with WiFi traffic, most notably the poor bidirectional
throughput. It is doubtful that straight-forward solutions exist to these issues,
but we believe this to be an interesting avenue for further research. Moreover,
in light of the positive results of applying queue management algorithms in
general, we believe that they can play a role in solving WiFi’s problems as well.

8 Conclusions and future work
We have compared three modern AQM algorithms, revealing three aspects of
the AQM behaviour: the Good, the Bad and the WiFi.

The Good: We show that in the steady state, the new AQM algorithms
(PIE and CoDel) show consistent improvements over FIFO queueing, as does
the older ARED algorithm. The relative performance of the three algorithms
varies with link characteristics; although ARED exhibits a slight tendency
to drop too aggressively, hurting throughput but improving latency. This
matches previous evaluations well.

78 Paper II

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

0 50 100 150 200
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(a) 1 stream.

0 100 200 300 400 500
Induced one-way delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

(b) RRUL.

Figure 10: VoIP test results for WiFi.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(a) 1 stream, Google.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0

2
4
6
8

10
12
14
16
18

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(b) RRUL, Google.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(c) 1 stream, Huffpost.

pf
ifo

_f
as

t

ar
ed pi

e

co
de

l

sf
q

fq
_n

oc
od

el

fq
_c

od
el0

2

4

6

8

10

12

No
rm

al
ise

d
m

ea
n

fe
tc

h
tim

e (
m

s)

(d) RRUL, Huffpost.

Figure 11: Web test results for WiFi.

The Good, the Bad and the WiFi 79

The Bad: The fairness results show that the AQM algorithms exacerbate
TCP unfairness compared to FIFO queueing. This aspect is often overlooked
in evaluations of AQM algorithms, but can be an important factor especially
when considering deployment of an AQM algorithm on a link likely to see
traffic with highly varying RTT: unfairness can potentially cause flows with
long RTTs to suffer degraded throughput, needlessly hurting performance. The
examination of transient behaviour shows that the CoDel and PIE algorithms
(ARED fares significantly better in this regard) can take several seconds to
get delay back under control after a significant load spike occurs, such as the
RRUL flow startup; in some cases even performing worse than FIFO queueing.

The WiFi: When adding a WiFi link as the bottleneck, we see that all the
queue management schemes fail to contain queueing latency. We attribute
this to queueing in lower layers of the WiFi stack, and it is clear that more
work is needed to properly address this: due to the nature of the physical layer
(incorporating retransmissions and packet aggregation features), it is not clear
that existing solutions from other media can translate directly to WiFi.

The analysis of these three aspects is an important contribution to under-
standing AQM behaviour. In particular, the transient behaviour has potential
to significantly impact the perceived performance of the network, especially
considering that traffic complexity and deployment of highly bursty applica-
tions is only increasing. Hence, these types of transient events are likely to be
frequent enough that dealing with them needs to be a priority. Likewise, WiFi
behaviour is an obvious are of potential improvement.

Our accompanying analysis of the fairness queueing algorithms as a pos-
sible remedy for some of the shortcomings of the pure AQM algorithms
shows very promising results. The fairness queueing algorithms exhibit steady
state goodput and latency generally superior to the AQM algorithms, they
ensure almost perfect fairness between flows and they prove to be an effective
remedy for transient latency spikes at flow startup. For WiFi, they still suffer
from queueing in the lower layers, but perform better than the pure AQMs.
One caveat is that the fairness queueing algorithms implicitly enforce sharing
and prioritisation constraints between flows that may be unsuitable for some
applications and scenarios different from those tested here. However, generally
we believe there is a convincing case for fairness queueing algorithms playing
an important role in ensuring low latency and high throughput in modern
(access) networks.

While the use of better queue management algorithms is proliferating,12
deployment remains a challenge. And developing comprehensive queue man-
agement solutions for different physical layer technologies constitutes import-
ant work, which can come with its own challenges, as we have seen in the
WiFi example. WiFi in particular remains a challenge (as does other mobile
technologies), but getting queue management deployed in places like cable and
DSL head-end equipment is also needed.

12For instance, fq_codel is the default in the latest versions of the OpenWrt, Fedora and Arch
Linux distributions, and PIE will be part of the upcoming DOCSIS 3.1 standard.

80 Paper II

Queue management surely plays an important role in ensuring tomorrow’s
internet provides reliably low-latency connections everywhere, but other
technologies also have a role to play, and are developing at a rapid pace. In
particular, the Linux networking stack continues to evolve, and in the versions
since the 3.14 kernel we have used for our tests, the kernel has seen several
tweaks to the TCP stack in particular, along with the inclusion of a whole new
congestion control algorithm (DataCenter TCP). Some of these improvements
are distinctive in themselves, and some of them have the potential to interact
with queue management algorithms in various ways. Figuring out the details
of these interactions is also important going forward.

Finally, as we have pointed out in our experiments, the existing queue
management schemes are not without issues in certain areas. Most notably, the
transient behaviour is an area in need of further study. Together, we consider
these issues to be promising potential avenues for further inquiry, and remain
optimistic that tomorrow’s internet will provide us with reliably low latency
at all layers.

References
[1] B. Briscoe et al., “Reducing internet latency: A survey of techniques and

their merits,” IEEE Communications Surveys Tutorials, vol. 18, no. 99, pp.
2149–2196, 2014.

[2] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
ACM Queue, vol. 9, no. 11, pp. 40–54, Nov. 2011.

[3] C. Staff, “BufferBloat: what’s wrong with the internet?” Communications
of the ACM, vol. 55, no. 2, pp. 40–47, Feb. 2012.

[4] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp.
397–413, 1993.

[5] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, Jul. 2012.

[6] R. Pan et al., “PIE: A lightweight control scheme to address the buf-
ferbloat problem,” in 2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR), July 2013, pp. 148–155.

[7] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm
for increasing the robustness of RED’s active queue management,” 2001.
http://www.icir.org/floyd/papers.html

[8] J. Gettys, “Traditional AQM is not enough,” Blog
post, July 2013. https://gettys.wordpress.com/2013/07/10/
low-latency-requires-smart-queuing-traditional-aqm-is-not-enough/

http://www.icir.org/floyd/papers.html
https://gettys.wordpress.com/2013/07/10/low-latency-requires-smart-queuing-traditional-aqm-is-not-enough/
https://gettys.wordpress.com/2013/07/10/low-latency-requires-smart-queuing-traditional-aqm-is-not-enough/

The Good, the Bad and the WiFi 81

[9] P. McKenney, “Stochastic fairness queueing,” in INFOCOM ’90. Ninth An-
nual Joint Conference of the IEEE Computer and Communication Societies,
vol. 2. IEEE, jun 1990, pp. 733–740.

[10] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

[11] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

[12] F. Checconi, L. Rizzo, and P. Valente, “QFQ: Efficient packet scheduling
with tight guarantees,” IEEE/ACM Transactions on Networking (TON),
vol. 21, no. 3, pp. 802–816, 2013.

[13] A. Kortebi, S. Oueslati, and J. W. Roberts, “Cross-protect: Implicit
service differentiation and admission control,” in 2004 Workshop on High
Performance Switching and Routing. IEEE, 2004, pp. 56–60.

[14] W.-C. Feng et al., “Stochastic Fair Blue: A Queue Management Algorithm
for Enforcing Fairness,” in Proceedings IEEE INFOCOM 2001. IEEE,
2001, pp. 1520–1529.

[15] G. White, “Active Queue Management in DOCSIS 3.X Cable
Modems,” Cable Television Laboratories, Inc., Tech. Rep., May
2014. http://www.cablelabs.com/wp-content/uploads/2014/06/
DOCSIS-AQM_May2014.pdf

[16] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block:
Much ado about nothing?” Oslo University, Tech. Rep. 434, 2013. https:
//www.duo.uio.no/handle/10852/37381

[17] V. P. Rao, M. P. Tahiliani, and U. K. K. Shenoy, “Analysis of sfqCoDel
for Active Queue Management,” in 2014 Fifth International Conference on
the Applications of Digital Information and Web Technologies (ICADIWT).
IEEE, 2014, p. 262–267.

[18] I. Järvinen and M. Kojo, “Evaluating CoDel, PIE, and HRED AQM
techniques with load transients,” in 39th Annual IEEE Conference on
Local Computer Networks. IEEE, 09 2014, pp. 159–167.

[19] K. Cai et al., “Wireless Unfairness: Alleviate MAC Congestion First!”
in Proceedings of the Second ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization. ACM,
2007, pp. 43–50.

[20] G. Park, H. Ko, and S. Pack, “Simulation study of bufferbloat problem
on wifi access point,” in 2014 IEEE 3rd Global Conference on Consumer
Electronics (GCCE), Oct 2014, pp. 729–730.

http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
http://www.cablelabs.com/wp-content/uploads/2014/06/DOCSIS-AQM_May2014.pdf
https://www.duo.uio.no/handle/10852/37381
https://www.duo.uio.no/handle/10852/37381

82 Paper II

[21] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 12–20, March 2010.

[22] A. N. Kuznetsov, “tbf – Token Bucket Filter,” Linux man page, 2014.

[23] D. Taht and J. Gettys, “Best practices for benchmarking Codel
and FQ Codel,” Wiki page on bufferbloat.net web site, September
2014. https://www.bufferbloat.net/projects/codel/wiki/Best_practices_
for_benchmarking_Codel_and_FQ_Codel/

[24] D. Taht, “Implementing comprehensive queue management on home
routers,” Internet Draft, 2014. http://snapon.lab.bufferbloat.net/~d/
draft-taht-home-gateway-best-practices-00.html

[25] R. Jones, “Netperf,” Open source benchmarking software, 2015. http:
//www.netperf.org/

[26] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation of real-
istic network workload for emerging networking scenarios,” Computer
Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[27] D. Stenberg, “curl and libcurl,” Project web site, 2015. https://curl.haxx.
se/

[28] T. Høiland-Jørgensen, “Flent: The FLExible Network Tester,” Project
web site, 2015. https://flent.org

[29] G. White and R. Pan, “A PIE-Based AQM for DOCSIS Cable Mo-
dems,” Internet Draft (informational), January 2015. https://tools.ietf.
org/html/draft-white-aqm-docsis-pie

[30] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network
of AQM routers supporting TCP flows with an application to RED,”
SIGCOMM Comput. Commun. Rev., vol. 30, no. 4, pp. 151–160, Aug.
2000.

[31] D. Taht, “Realtime Response Under Load (RRUL) Test,” November
2012. https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/

[32] K. Winstein, “Transport architectures for an evolving internet,” Ph.D.
dissertation, Massachusetts Institute of Technology, Jun. 2014. https:
//cs.stanford.edu/~keithw/www/Winstein-PhD-Thesis.pdf

[33] H. Balakrishnan and V. N. Padmanabhan, “How network asymmetry
affects TCP,” Communications Magazine, IEEE, vol. 39, no. 4, pp. 60–67,
2001.

[34] T. Høiland-Jørgensen, “http-getter,” Source code repository, 2014. https:
//github.com/tohojo/http-getter

https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benchmarking_Codel_and_FQ_Codel/
https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benchmarking_Codel_and_FQ_Codel/
http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html
http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html
http://www.netperf.org/
http://www.netperf.org/
https://curl.haxx.se/
https://curl.haxx.se/
https://flent.org
https://tools.ietf.org/html/draft-white-aqm-docsis-pie
https://tools.ietf.org/html/draft-white-aqm-docsis-pie
https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/
https://cs.stanford.edu/~keithw/www/Winstein-PhD-Thesis.pdf
https://cs.stanford.edu/~keithw/www/Winstein-PhD-Thesis.pdf
https://github.com/tohojo/http-getter
https://github.com/tohojo/http-getter

The Good, the Bad and the WiFi 83

[35] A. Kortebi et al., “Evaluating the number of active flows in a sched-
uler realizing fair statistical bandwidth sharing,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 33. ACM, 2005, pp. 217–228.

[36] J. Padhye et al., “Modeling TCP throughput: A simple model and its
empirical validation,” in ACM SIGCOMM Computer Communication
Review, vol. 28, no. 4. ACM, 1998, pp. 303–314.

[37] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” Operation Systems Review, vol. 42, no. 5, pp. 64–74, Jul.
2008.

[38] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving RTT fairness on
CUBIC TCP,” in 2013 First International Symposium on Computing and
Networking (CANDAR), Dec 2013, pp. 162–167.

[39] R. Jain, D.-M. Chiu, and W. R. Hawe, AQuantitative Measure Of Fairness
And Discrimination For Resource Allocation In Shared Computer Systems.
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

[40] B. Briscoe, “[aqm] CoDel’s control law that determines drop frequency,”
IETF AQM mailing list message, Nov 2013. https://www.ietf.org/
mail-archive/web/aqm/current/msg00376.html

[41] R. Pan, “Re: [aqm] draft-ietf-aqm-pie-01: review,” IETF AQM mailing
list message, May 2015. https://www.ietf.org/mail-archive/web/aqm/
current/msg01216.html

[42] T. Herbert, “bql: Byte Queue Limits,” Patch posted to the Linux kernel
network development mailing list, Nov 2011. https://lwn.net/Articles/
454378/

https://www.ietf.org/mail-archive/web/aqm/current/msg00376.html
https://www.ietf.org/mail-archive/web/aqm/current/msg00376.html
https://www.ietf.org/mail-archive/web/aqm/current/msg01216.html
https://www.ietf.org/mail-archive/web/aqm/current/msg01216.html
https://lwn.net/Articles/454378/
https://lwn.net/Articles/454378/

IIIPaper

Reprinted from

Analysing the Latency of
Sparse Flows in the FQ-CoDel
Queue Management Algorithm

IEEE Communication Letters, October 2018

“If we’re sticking code into boxes to deploy CoDel,
don’t do that. Deploy FQ-CoDel. It’s just an across

the board win.”

Van Jacobsson, at IETF 84

Analysing the Latency of Sparse Flows in the
FQ-CoDel Queue Management Algorithm

Toke Høiland-Jørgensen
toke.hoiland-jorgensen@kau.se

Abstract

The FQ-CoDel queue management algorithm was recently published
as an IETF RFC. It achieves low latency especially for low-volume (or
sparse) traffic flows competing with bulk flows. However, the exact
conditions for when a particular flow is considered to be sparse has not
been well-explored.

In this work, we analyse the performance characteristics of the sparse
flow optimisation of FQ-CoDel, formulating the constraints that flows
must satisfy to be considered sparse in a given scenario. We also formulate
expressions for the expected queueing latency for sparse flows.

Then, using a numerical example, we show that for a given link and
a given type of sparse flows (VoIP traffic), the number of sparse flows
that a given bottleneck can service with low sparse flow latency is only
dependent on the number of backlogged bulk flows at the bottleneck.
Furthermore, as long as the maximum number of sparse flows is not
exceeded, all sparse flows can expect a very low queueing latency through
the bottleneck.

1 Introduction
The FQ-CoDel queue management algorithm, which was recently published
as an IETF RFC [1], is a hybrid AQM and packet scheduling algorithm that
has been shown to be an excellent remedy for the bufferbloat problem of
excessive queueing on a congested link [2]. In particular, FQ-CoDel achieves
very low latency for low-volume traffic competing with the bulk flows causing
the congestion. This is due to the sparse flow optimisation employed in the flow
scheduler.

However, while FQ-CoDel has been shown to achieve very low latency for
such sparse flows, the exact conditions for when a particular flow is considered
to be sparse has not been well-explored, as noted in the RFC [1, Section 1.3].

87

88 Paper III

The contribution of this work is an analysis of what exactly constitutes
a sparse flow in FQ-CoDel. We achieve this by formulating analytical ex-
pressions for the constraints flows must satisfy to be treated as sparse by the
FQ-CoDel scheduler, and supplement with a numeric example and simulation
for a typical example of real-world traffic (real-time VoIP traffic).

The rest of this paper is structured as follows: Section 2 first summarises
related work and Section 3 explains how the sparse flow optimisation in FQ-
CoDel works. Section 4 then presents our analytical framework and results
and Section 5 shows the real-world examples. Finally, Section 6 concludes.

2 Related work
While several studies have measured the performance of FQ-CoDel (e.g.,
[2–4]), none deal specifically with the sparse flow optimisation, and none offer
any analytical expressions for the performance of the algorithm. However,
similar algorithms have been subject to analysis, as summarised below.

FQ-CoDel is based on the deficit round-robin (DRR) scheduler [5]. The
authors of DRR propose an extension called DRR+ where "latency-sensitive
flows" are given priority as long as such a flow never sends more than x bytes
every time period T , which can be said to be an a priori analytical expression
for the constraints of a sparse flow. This mechanism is expanded upon in
the DRR++ [6] algorithm, which adds an extension to the mechanism to
better deal with bursty latency-sensitive flows. The scheduling of DRR++,
in particular, is identical to that of FQ-CoDel, except that DRR++ requires
flows to be explicitly classified as latency-sensitive (without specifying any
mechanism to do so), whereas FQ-CoDel applies the same scheduling to all
flows, which means that latency-sensitive flows are only classified implicitly.
However, since the authors of DRR++ assume an a priori classification of
latency-sensitive flows, there is no analysis of their constraints.

The implicit classification mechanism of FQ-CoDel is similar to that used
by the Shortest Queue First (SQF) queueing scheme [7], which works by
simply dequeueing packets from the shortest queue available at the time of
dequeue. This gives implicit priority to flows that do not build a queue, such
as voice flows and low-bandwidth video streams. However, since SQF does not
use a round-robin scheduler, it gives no service guarantees to the backlogged
bulk flows. The authors provide both analytical and experimental evaluations
of the algorithm performance characteristics in [8].

The Quick Fair Queueing (QFQ) algorithm [9] is an O(1) scheduling
algorithm that implements fairness queueing between flows in a way that
approximates a fluid model of the flows with high accuracy. The paper provides
an extensive analysis of its performance characteristics.

Finally, a comprehensive analysis of the number of active flows in a fairness
queueing system is provided in [10]. This does not treat queueing latency, nor
does it distinguish between types of traffic, such as sparse or bulk flows.

Analysing the Latency of Sparse Flows in the FQ-CoDel Queue. . . 89

3 The sparse flow optimisation
The FQ-CoDel sparse flow optimisation works as follows:

When a packet arrives at the router, it is hashed on its transport layer
5-tuple (source and destination IP, IP protocol number and source and des-
tination ports). The result of the hash, modulo the number of configured
queues, is the queue number of that packet, and the packet is enqueued to that
queue. If this queue is already active, no further action is taken. However, if
the queue is not already active, it is made active by being added to the end of
the list of new queues.

When dequeueing a packet, FQ-CoDel first finds a queue to dequeue from.
This is done by first looking at the list of new queues, which gives priority
to queues that recently transitioned from inactive to active. If the list of new
queues is empty, a queue is selected from the list of old queues (which is every
queue that is not a new queue). Having selected the appropriate queue (either
new or old), that queue gets to dequeue packets at most totalling quantum
bytes (which is configurable, but defaults to one MTU), and afterwards the
queue is moved to the end of the list of old queues. When a queue becomes
empty, it is removed (and so transitions to the inactive state) as long as it has
transitioned through the list of old queues at least once.

Since empty queues return to the inactive state, it is possible for a flow to
have all its packets trigger the re-activation of the queue when they arrive at
the router, which will give the flow effective priority for its entire duration. In
the following, we explore what it takes for a flow to achieve this.

4 Analytical framework
Consider an FQ-CoDel instance managing a bottleneck with transmission rate
R bytes per second, with N backlogged flows sharing the bottleneck (and so
each achieving a rate of R/N bytes per second). We do not concern ourselves
with the performance of the N flows, and we assume no hash collisions occur.
We furthermore assume all flows transmit packets of equal size L bytes and
that the FQ-CoDel quantum Q = L.

4.1 One sparse flow
Consider a sparse flow S transmitting packets of size LS ≤ L bytes. What is
the maximum transmission rate that permits this flow to be prioritised by
the sparse flow mechanism? We first assume that the packets of S are equally
spaced with inter-arrival time IS seconds.

When a packet from flow S arrives at the bottleneck, it will have to wait
for the packet currently being serviced to complete transmission. After this,
the queue of flow S will be activated as a new queue (i.e., get priority) and be
serviced immediately. Once the packet has been transmitted, the queue will
be moved to the end of the list of old queues, and if it is still empty after the
scheduler has cycled through all the backlogged flows, it will be removed.

90 Paper III

This means that to get treated as sparse, the next packet from S has to
arrive after the queue has been removed from the scheduler. I.e., after the
transmission of the previous packet in S , plus the bulk packet being serviced on
arrival, and one additional packet from each backlogged flow. This translates
to the following constraints on S :

IS >
L(N + 1) + LS

R
⇒ RS <

R
L
LS
(N + 1) + 1

(1)

Where RS is the rate of flow S .
Next, we consider what happens if the packets of S are not equally spaced

(i.e., that IS varies between subsequent packets), but still obeys the rate restric-
tion in (1). There are two cases to consider: The case where the packets of S
are sent in bursts of several back-to-back packets with longer spaces between
them, and the case where the inter-arrival time simply varies so that, say, every
other packet pair obeys (1) and every other pair does not.

In the case of bursts we assume that the bursts themselves are equally
spaced over the lifetime of the flow. If the total burst size is less than the
quantum size (i.e., Q >= nLS for bursts of n packets), all packets in the burst
will be dequeued at the same time, and we can simply consider the behaviour
equivalent to the case where the flow consists of single equally spaced packets
of size nLS . If the burst is larger than the quantum size, the first Q bytes of
each burst will be dequeued immediately, while the rest will be queued until
the next round of the scheduler13.

For the non-burst case, we consider the packets p1, . . . , pn of flow S with
inter-arrival times i1, . . . , in−1 since the previous packet. By assumption, the
average inter-arrival time is IS and obeys (1). This means that inter-arrival times
will alternate between being less than or more than IS . I.e., every sequence
of consecutive packet arrivals with inter-arrival times i−0 , . . . , i

−
j < IS will be

followed by a sequence of packet arrivals with inter-arrival times i+0 , . . . , i
+
k > IS

(otherwise (1) wouldn’t hold). We label the i’th sequence of packets with
inter-arrival times < IS as I −i , and the (ordered) set of all such sequences as
I−. Similarly, the j’th sequence of packets with inter-arrival times >= IS are
labelled I +j , with the set of all such sequences given as I+. We furthermore
impose a regularity constraint on the flow:

∀I −i ∈ I
− :

I −i + I
+
i

2
≥ IS (2)

where I −i is the average value of ik ∈ I −i . I.e., (2) states that every sequence
of packets with inter-arrival times smaller than IS must be followed by a
sequence of packets with inter-arrival times larger than IS , such that the average
inter-arrival time satisfies (1) when looking only at those two sub-sequences.

Given these constraints, packets in I + will receive the low latency perform-
ance from the sparse flow optimisations, while packets in I − will arrive while

13Since we assume that the average rate of the flow obeys (1), the queue has to be cleared out
before the next burst.

Analysing the Latency of Sparse Flows in the FQ-CoDel Queue. . . 91

the queue is already being scheduled, and so will experience higher queueing
latency. The actual queueing latency experienced by packets in I − depends on
the distribution of packets; exploring this is out of scope for this analysis.

4.2 Multiple sparse flows
If M sparse flows go through the bottleneck, and we assume that all sparse
flows have the same packet inter-arrival time IS , this inter-arrival time will
have to satisfy:

IS >
L(N + 1) + LSM

R
(3)

In the worst case scenario, the sparse flows synchronise (so packets from
all flows arrive at the same time). In this case, the expected queueing latency
for all sparse flows will be:

LS (M − 1) + L
2R

(4)

Where the L is due to the bulk flows not being preempted.
However, this worst-case latency is only seen if the sparse flows synchronise

so that their packets arrive at the same time (and have to queue behind one
another). We can express expected queueing latency of a sparse flow in the
average case by modelling the arrivals of sparse flows as follows.

Since we have bounded the inter-arrival time for each flow by (3), all flows
are by assumption sparse themselves. This means that when a packet on a
given sparse flow arrives at the bottleneck, it will not queue behind any other
packets from the same flow, but only behind other sparse flows. Since the
sparse flows are served in round-robin order, this becomes equivalent to a
FIFO queue of flows waiting to be serviced (each of which has a single packet
queued), and so we are really expressing the distribution of flow start times.
Assuming Poisson arrivals for the flows, this system can be expressed as an
M /D/1 queue (as link capacity and packet sizes are fixed). This will allow
us to express an upper bound on the expected queueing latency of the sparse
flows (since the flow arrival distribution with a fixed number of flows would
be a right-truncated exponential distribution, rather than the exponential
distribution assumed in an M /D/1 setting).

This M /D/1 queueing system has the following values for arrival rate (λ),
service rate (µ) and utilisation (ρ):

λ = M /IS, µ = R/LS, ρ =
MLS
RIS

(5)

From this, we can straight-forwardly express the expected queueing time
ωq as a function of the number of sparse flows, the packet size and inter-arrival
times and the link rate:

92 Paper III

ωq =
ρ

2µ(1 − ρ) =
MLS
RIS

2 R
LS

(
1 − MLS

RIS

)
=

MLS

2 R
LS
(RIS − MLS)

(6)

This is useful for predicting and upper bound the expected queueing time
for any concrete flow type (where these values are known), as we will see in
Section 5. Note that in the case where there are also bulk flows present, we
need to add L/2R to the expected queueing time, to account for the packet
that is being processed when a packet from a sparse flow arrives.

4.3 Impact on bulk flows
Since the sparse flow optimisation simply corresponds to inserting new queues
at the head of the round-robin list instead of at the tail, the steady-state
performance impact on bulk flows is the same as for DRR; i.e., given two
flows flow i and j , for each dequeue opportunity afforded to i, j has at least
one dequeue opportunity. As such, the expected service given to each flow
scales with the total number of bulk and sparse flows (i.e., it is proportional
to N + M), in the worst case. In practice, many sparse flows will have rates
significantly lower than the bulk flows, in which case the DRR scheduler will
divide the spare capacity between the backlogged bulk flows.

4.4 Impact of changing the quantum
We initially assumed that the quantum Q = L, which means that a bulk flow
can dequeue a full packet every time it is scheduled. If Q > L, every bulk
flow is still serviced every scheduling round, but may dequeue more than one
packet. Whereas, if Q < L, each bulk flow will get a dequeue opportunity
every L/Q scheduling rounds and, conversely, only QN /L bulk flows will
dequeue a packet each round. In the case where only bulk flows are present,
these two effects cancel each other out. However, in the presence of sparse
flows, the quantum impacts the bounds on sparse flow inter-arrival time given
in (3). Assuming Q >= LS so sparse flows always dequeue a full packet when
they are scheduled, this becomes:

IS >
Q (N + 1) + LSM

R
(7)

5 Real-world examples
Using (6) and (7) we can compute two useful properties: The maximum
number of sparse flows a given link can sustain as a function of the number
of backlogged bulk flows at the bottleneck, and the expected queueing time

Analysing the Latency of Sparse Flows in the FQ-CoDel Queue. . . 93

for each such sparse flow. To do this, we can rewrite (7) as follows, while also
including the case where there are no bulk flows:

Mmax <

ISR
LS

, if N = 0

ISR −Q (N + 1)
LS

, if N > 0
(8)

We also need to assign some values to the variables in the equations. For
our example, we consider a 10 Mbps Ethernet link where bulk flows transmit
full-size (1518 bytes) packets and the quantum is set to coincide with this full
packet size (as is the default in FQ-CoDel), and the sparse flows consist of a
number of G.711 VoIP flows at the highest (64 Kbps) data rate, which transmits
packets of 218 bytes (160 bytes payload + RTP, UDP, IP and Ethernet headers)
at a fixed 20 ms interval. These values are summarised in Table 1.

Table 1: Values used in the numerical example

Variable Value

Q 1518B
LS 218B
IS 0.02s
R 1.25 MB/s (10 Mbps)

With these values, (8) tells us that the maximum number of VoIP flows
the bottleneck can handle while still treating them as sparse flows, is a linear
function of the number of bulk flows backlogged at the bottleneck. With no
bulk flows, 114 sparse flows can be serviced, which correspond to the number
of VoIP flows the bottleneck link has capacity for (each flow transmits at
a link-level rate of 87.2 Kbps). With 15 bulk flows backlogged, only three
simultaneous VoIP flows can traverse the bottleneck link as sparse flows, and
with more backlogged flows, the VoIP flows will no longer be treated as sparse.
The number of sparse flows per bulk flow is related to the ratio between the
quantum and the packet size of the VoIP flows.

Turning to the expected queueing time of the sparse flows themselves,
Figure 1 shows this as a function of the number of sparse flows. To verify
that the model accurately predicts an upper bound on the queueing latency,
we have also created a simulation of FQ-CoDel in the Salabim event-driven
simulator14. The results from the simulation are also included in the figure.15
Note that the expected queueing time does not depend on the number of bulk
flows, other than to limit the number of sparse flows that can be supported.
In fact, a sparse flow can experience lower latency when competing against

14http://www.salabim.org
15The bulk flows used in the simulation are fixed rate UDP flows. Further details of the

simulation runs are omitted here due to space constrains, but are available (along with the full
simulation source code) in [11].

http://www.salabim.org

94 Paper III

0 20 40 60 80 100 120
Number of sparse flows

0

1

2

3

4

5

Qu
eu

ei
ng

 d
el

ay
 (m

s)

Simulation
Analysis

(a) No bulk flows

0 20 40 60 80 100 120
Number of sparse flows

0

1

2

3

4

5

Qu
eu

ei
ng

 d
el

ay
 (m

s)

Simulation
Analysis

(b) One bulk flow

Figure 1: Expected queueing delay as a function of the number of sparse flows at the
bottleneck.

Analysing the Latency of Sparse Flows in the FQ-CoDel Queue. . . 95

bulk flows, than when competing against a large number of other sparse flows.
This limiting is illustrated by the two graphs, where Figure 1a shows the case
of no bulk flows and Figure 1b shows the case of a single bulk flow.

The thing to note here is that the expected queueing latency is kept very
low for all the sparse flows, and that adding bulk flows does not change this,
other than to add a constant to the queueing time corresponding to the packet
being processed when a sparse flow packet arrives. In fact, as Figure 1b shows,
the expected queueing latency even for the maximum number of sparse flows
that the link can handle, is less than two milliseconds with one or more bulk
flows limiting the number of sparse flows. So as long as an operator is using
(8) to calculate the max number of sparse flows the link can support, she can
be confident that the sparse flows themselves will achieve very low queueing
latency at the bottleneck.

6 Conclusion
We have analysed the performance characteristics of the sparse flow optim-
isation of FQ-CoDel. This analysis shows the constraints that flows must
satisfy to be considered sparse in a given scenario, which is dependent on the
number of flows (both bulk and sparse) and the link rate. We also formulate
expressions for the expected queueing latency for sparse flows.

Using a numerical example, we also show that for a given link and a given
type of sparse flows (VoIP traffic), the number of sparse flows that a given
bottleneck can service with the low sparse flow latency is only dependent on
the number of backlogged bulk flows at the bottleneck. And that as long as
the maximum number of sparse flows is not exceeded, all sparse flows can
expect a very low queueing latency.

7 Acknowledgements
Many thanks to Daniel Larsson and Martin Wahlberg for implementing and
running the simulation and to Dave Taht, Johan Garcia, Per Hurtig and Anna
Brunstrom for feedback on the ideas and for reviewing various versions of the
manuscript.

References
[1] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler

and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

[2] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the
Bad and the WiFi: Modern AQMs in a residential setting,” Computer
Networks, vol. 89, pp. 90–106, Oct. 2015.

96 Paper III

[3] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block:
Much ado about nothing?” Oslo University, Tech. Rep. 434, 2013.

[4] J. Kua, G. Armitage, and P. Branch, “The impact of active queue manage-
ment on dash-based content delivery,” in IEEE 41st Conference on Local
Computer Networks (LCN), Nov 2016, pp. 121–128.

[5] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-
robin,” IEEE/ACM Transactions on Networking, Jun. 1996.

[6] M. H. MacGregor and W. Shi, “Deficits for bursty latency-critical flows:
DRR++,” in IEEE International Conference on Networks, 2000. IEEE,
2000, pp. 287–293.

[7] T. Bonald, L. Muscariello, and N. Ostallo, “Self-prioritization of audio
and video traffic,” in 2011 IEEE International Conference on Communica-
tions (ICC). IEEE, 2011.

[8] G. Carofiglio and L. Muscariello, “On the impact of TCP and per-
flow scheduling on internet performance,” IEEE/ACM Transactions on
Networking, vol. 20, no. 2, pp. 620–633, 2012.

[9] F. Checconi, L. Rizzo, and P. Valente, “QFQ: Efficient packet scheduling
with tight guarantees,” IEEE/ACM Transactions on Networking, vol. 21,
no. 3, pp. 802–816, 2013.

[10] A. Kortebi et al., “Evaluating the number of active flows in a sched-
uler realizing fair statistical bandwidth sharing,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 33. ACM, 2005, pp. 217–228.

[11] T. Høiland-Jørgensen, D. Larsson, and M. Wahlberg, “FQ-CoDel Queue
Management Algorithm - Sparse Flow Analysis Software,” Sep. 2018.
https://doi.org/10.5281/zenodo.1420467

https://doi.org/10.5281/zenodo.1420467

IVPaper

Reprinted from

A Comprehensive Queue Management
Solution for Home Gateways

Piece of CAKE

IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN
2018), 25–27 June 2018, Washington, DC

“Cake and grief counselling will be available at the
conclusion of the test.”

GLaDOS, the Portal game

Piece of CAKE
A Comprehensive Queue Management Solution for Home

Gateways

Toke Høiland-Jørgensen, Dave Täht and Jonathan Morton
toke.hoiland-jorgensen@kau.se, dave.taht@gmail.com,

chromatix99@gmail.com

Abstract
The last several years has seen a renewed interest in smart queue

management to curb excessive network queueing delay, as people have
realised the prevalence of bufferbloat in real networks.

However, for an effective deployment at today’s last mile connections,
an improved queueing algorithm is not enough in itself, as often the
bottleneck queue is situated in legacy systems that cannot be upgraded. In
addition, features such as per-user fairness and the ability to de-prioritise
background traffic are often desirable in a home gateway.

In this paper we present Common Applications Kept Enhanced
(CAKE), a comprehensive network queue management system designed
specifically for home internet gateways. CAKE packs several compel-
ling features into an integrated solution, thus easing deployment. These
features include: bandwidth shaping with overhead compensation for
various link layers; reasonable DiffServ handling; improved flow hashing
with both per-flow and per-host queueing fairness; and filtering of TCP
ACKs.

Our evaluation shows that these features offer compelling advantages,
and that CAKE has the potential to significantly improve performance
of last-mile internet connections.

1 Introduction
Eliminating bufferbloat has been recognised as an important component in
ensuring acceptable performance of internet connections, especially as ap-
plications and users demand ever lower latencies. The last several years have
established that Active Queue Management and Fairness Queueing are effect-
ive solutions to the bufferbloat problem, and several algorithms have been
proposed and evaluated (e.g., [1–3]).

99

100 Paper IV

However, while modern queueing algorithms can effectively control buf-
ferbloat, effective deployment presents significant challenges. The most imme-
diate challenge is that the home gateway device is often not directly in control
of the bottleneck link, because queueing persists in drivers or firmware of
devices that cannot be upgraded [1]. In addition, other desirable features in a
home networking context (such as per-user fairness, or the ability to explicitly
de-prioritise background applications) can be challenging to integrate with ex-
isting queueing solutions. To improve upon this situation, we have developed
Common Applications Kept Enhanced (CAKE), which is a comprehensive
network queue management system designed specifically for the home router
use case.

As outlined below, each of the issues that CAKE is designed to handle has
been addressed separately before. As such, the compelling benefit of CAKE is
that it takes state of the art solutions and integrates them to provide:

• a high-precision rate-based bandwidth shaper that includes overhead and
link layer compensation features for various link types.

• a state of the art fairness queueing scheme that simultaneously provides
both host and flow isolation.

• a Differentiated Services (DiffServ) prioritisation scheme with rate limit-
ing of high-priority flows and work-conserving bandwidth borrowing
behaviour.

• TCP ACK filtering that increases achievable throughput on highly asym-
metrical links.

CAKE is implemented as a queueing discipline (qdisc) for the Linux kernel.
It has been deployed as part of the OpenWrt router firmware for the last
several years and is in the process of being submitted for inclusion in the
mainline Linux kernel.16

The rest of this paper describes the design and implementation of CAKE
and is organised as follows: Section 2 outlines the desirable features of a
comprehensive queue management system for a home router, and recounts
related work in this space. Section 3 describes the design and implementation
of CAKE in more detail, and Section 4 evaluates the performance of the
various features. Finally, Section 5 concludes.

2 Background and Related Work
As mentioned initially, CAKE is designed to run on a home network gateway.
We have gathered significant experience with implementing such a system in
form of the Smart Queue Management (SQM) system shipped in the OpenWrt
router firmware project, which has guided the design of CAKE.

16We include links to the source code, along with the full evaluation dataset, in an online
appendix [4].

Piece of CAKE 101

In this section we provide an overview of the problems CAKE is designed
to address. We are not aware of any previous work addressing the home
gateway queue management challenges as a whole. However, several of the
issues that CAKE addresses have been subject of previous work, and so the
following subsections serve as both an introduction to the design space and an
overview of related work.

The four problems we seek to address are bandwidth shaping, queue
management and fairness, DiffServ handling and TCP ACK filtering. These
are each treated in turn in the following sections.

2.1 Bandwidth Shaping
A queue management algorithm is only effective if it is in control of the
bottleneck queue. Thus, queueing in lower layers needs to be eliminated,
which has been achieved in Linux for Ethernet [5] and WiFi [6]. However,
eliminating queueing at the link layer is not always possible, either because
the driver source code is unavailable, or because the link-layer is implemented
in inaccessible hardware or firmware (either on the same device or a separate
device, such as a DSL modem).

As an alternative, queueing in the lower layers can be avoided by deploying
a bandwidth shaper as part of the queue management system. By limiting the
traffic traversing the bottleneck link to a bandwidth that is slightly less than
the physical capacity of the link itself, queueing at the physical bottleneck
can be eliminated and bufferbloat avoided. Such bandwidth shaping can be
performed by a token bucket-based shaper (as is well-known from ATM
networks, e.g., [7]), or by a rate-based shaper (which is known from video
streaming applications, e.g., [8]).

The use of a shaper to move the link bottleneck wastes the bandwidth that
is the difference between the actual physical link capacity, and the set-point
of the shaper. To limit this waste, the shaper needs to be set as close to the
actual link bandwidth as possible, while avoiding sending bursts of packets at
a rate that is higher than the actual capacity. To achieve this, accurate timing
information on a per-packet basis is needed. In addition, the shaper must
account for link-layer framing and overhead. For instance, DSL links using
ATM framing split up data packets into an integer number of fixed-size cells,
which means that the framing overhead is a step function of packet size, rather
than a fixed value.

2.2 Queue Management
Having control of the bottleneck queue makes it possible to implement effect-
ive queue management that can all but eliminate bufferbloat. Such a queue
management scheme usually takes the form of an Active Queue Management
(AQM) algorithm, combined with a form of fairness queueing (FQ). Sev-
eral such schemes exist, and extensive evaluation is available in the literature
(e.g., [1–3, 9–11]).

102 Paper IV

Among the state of the art algorithms in modern queue management, is
the FQ-CoDel algorithm [12]. FQ-CoDel implements a hybrid AQM/fairness
queueing scheme which isolates flows using a hashing scheme and schedules
them using a Deficit Round-Robin (DRR) [13] scheduler. In addition, FQ-
CoDel contains an optimisation that provides implicit service differentiation
for sparse (low-bandwidth) flows, similar to [14, 15]. Evaluations of FQ-
CoDel have shown that it achieves low queueing latency and high utilisation
under a variety of scenarios [1, 3].

However, while the FQ-CoDel scheduler provides flow isolation and
fairness, the transport layer flow is not always the right level of fairness in
the home gateway use case. Often, additional isolation between hosts on the
network is desirable; and indeed this per-host isolation was the most requested
feature of the SQM system. Host isolation is straight-forward to implement
in place of flow fairness in any fairness queueing based scheme (by simply
changing the function that maps packets into different queues), but we are not
aware of any practical schemes prior to CAKE that implement both host and
flow fairness.

2.3 DiffServ Handling
Even though flow-based fairness queueing offers a large degree of separation
between traffic flows, it can still be desirable to explicitly treat some traffic as
higher priority, and to have the ability to mark other traffic as low priority.
Since a home network generally does not feature any admission control, any
prioritisation scheme needs to be robust against attempts at abuse (so, e.g., a
strict priority queue does not work well). In addition, enabling prioritisation
should not affect the total available bandwidth in the absence of marked traffic,
as that is likely to cause users to turn the feature off.

Prioritisation of different traffic classes can be performed by reacting to
DiffServ markings [16]. This is commonly used in WiFi networks, where
DiffServ code points map traffic into four priority levels [17]. For the home
gateway use case, various schemes have been proposed in the literature (e.g.,
[18]), but as far as we are aware, none have seen significant deployment.

2.4 TCP ACK Filtering
TCP ACK filtering is an optimisation that has seen some popularity in highly
asymmetrical networks [19], and especially in cable modem deployments
[20]. The technique involves filtering (or thinning) TCP acknowledgement
(ACK) packets by inspecting queues and dropping ACKs if a TCP flow has
several consecutive ACKs queued. This can improve performance on highly
asymmetrical links, where the reverse path does not have sufficient capacity to
transport the ACKs produced by the forward path TCP flow. However, ACK
filtering can also have detrimental effects on performance, for instance due to
cross layer interactions [21].

Piece of CAKE 103

3 The Design of CAKE
The design of CAKE builds upon the basic fairness scheduler design of FQ-
CoDel, but adds features to tackle the areas outlined in the previous section.
The following sections outline how CAKE implements each of these features.

3.1 Bandwidth Shaping
CAKE implements a rate-based shaper, which works by scheduling packet
transmission at precise intervals using a virtual transmission clock. The clock
is initialised by the first packet to arrive at an empty queue, and thereafter is
incremented by the calculated serialisation delay of each transmitted packet.
Packets are delayed until the system time has caught up with the virtual clock.
If the clock schedule is reached while the queue is empty, the clock is reset and
the link goes idle.

This shaper handles bandwidth ranging over several orders of magnitude,
from several Kbps to several Gbps. In addition, the rate-based shaper does
not require a burst parameter, which simplifies configuration as compared
to a token-bucket shaper. It also eliminates the initial burst observed from
token-bucket shapers after an idle period. This is important for controlling
the bottleneck queue, as this initial burst would result in queueing at the real
bottleneck link.

3.1.1 Overhead and Framing Compensation

As mentioned in Section 2.1 above, the shaper accounts for the actual size of a
packet on the wire, including any encapsulation and overhead, which allows the
rate to be set closer to the actual bottleneck bandwidth, thus eliminating waste.
We believe it is safe to set a rate within 0.1% of the actual link rate when the
overhead compensation is configured correctly, with a margin mainly required
to accommodate slight variations in the actual bottleneck link bandwidth,
caused by, e.g., clock drift in the hardware.

CAKE implements an overhead compensation algorithm which begins
by determining the size of the network-layer packet, stripped of any MAC
layer encapsulation. Having determined the network-layer packet size, the
configured overhead can be added to yield the correct on-the-wire packet size,
followed optionally by a specialised adjustment for ATM or PTM framing.
This algorithm is shown in Algorithm 1.

Using the network-layer packet size and adding a manually configured
overhead value is required because the values reported by the kernel are
often wrong due to idiosyncrasies of the CPE unit. While this does make
configuration a bit more complex, we seek to alleviate this by providing
keywords for commonly used configurations.

As part of the overhead compensation, CAKE also optionally splits "super
packets" generated by hardware offload features. These super packets are
essential for operating at high bandwidths, as they help amortise fixed network
stack costs over several packets. However, at lower bandwidths they can hurt

104 Paper IV

Algorithm 1 Shaping and overhead compensation algorithm. T_next is the time
at which the next packet is eligible for tranmission.

1: function enqueue(pkt)
2: net_len← pkt.len−network_offset(pkt)
3: adj_len← net_len + overhead
4: if ATM framing is enabled then
5: adj_len← ceiling(adj_len / 48) * 53
6: else if PTM framing is enabled then
7: adj_len← ceiling(adj_len / 64) * 65
8: pkt.adj_len← adj_len
9: if backlog is zero and T_next is after Now then

10: T_next← Now
11: function dequeue

12: if T_next is after Now then
13: Schedule interrupt at T_next
14: return Nil
15: pkt← Choose Packet
16: T_next← T_next + pkt.adj_len ∗ time_per_byte
17: return pkt

latency, in particular when a link with a high physical bandwidth is shaped
to a lower rate. For this reason, we conditionally split super packets when
shaping at rates lower than 1 Gbps. This allows CAKE to ensure low latency
at lower rates, while still scaling to full line rate on a 40Gbps link.

3.2 Flow Isolation and Hashing
CAKE replaces the direct hash function used in FQ-CoDel with an 8-way
set-associative hash. While set-associative hashing has been well-known for
decades as a means to improve the performance of CPU caches [22], it has
not seen much use in packet scheduling. Conceptually, a k−way set-associative
hash with n total buckets can be thought of as a plain hash with n/k buckets
that is only considered to have a collision if more than k items hash into the
same bucket. As can be seen in Figure 1, this significantly reduces the hash
collision probability up to the point where the number of flows is larger than
the number of queues.17

3.2.1 Host Isolation

With flow fairness, hosts can increase their share of the available bandwidth by
splitting their traffic over multiple flows. This can be prevented by providing
host fairness at the endpoint IP address level, which CAKE can do in addition
to flow fairness.

The host isolation is simple in concept: The effective DRR quantum is
divided by the number of flows active for the flow endpoint. This mechanism

17See how we computed these probabilities in the online appendix.

Piece of CAKE 105

0 500 1000 1500 2000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Regular 8-way

Number of active flows

Co
lli

si
on

 p
ro

ba
bi

lit
y

Figure 1: Probability that a new flow will experience a hash collision, as a function of
the number of active flows. 1024 total queues.

can be activated in three different modes: source address fairness, in which
hosts on the local LAN receive equal share, destination address fairness, in
which servers on the public internet receive an equal share, or "triple isolate"
mode, in which the maximum of the source and destination scaling is applied
to each flow. CAKE also hooks into the Linux kernel Network Address
Translation (NAT) subsystem to obtain the internal host address of a packet,
which would otherwise be obscured since packets are queued after NAT is
applied.

CAKE accomplishes this scaling as shown in Algorithm 2: When a packet
is enqueued it is hashed into a queue using the transport layer port numbers
along with the source and destination IP addresses. In addition, two separate
hashes are performed on the packet destination IP address and source IP
address. A separate set of hash buckets is kept for these address hashes. These
buckets do not contain a queue of packets, but instead a data structure that
keeps two reference counts for each IP address, which track the number of
active flows with the given address as source and destination, respectively.

The per-IP reference counts are used to modify the quantum for each active
flow. When a flow is scheduled, its "host load" is calculated as the maximum of
the reference counts for its source and destination IP addresses. The effective
quantum of the flow is simply divided by this load value, which achieves the
desired scaling.

3.3 DiffServ handling
CAKE provides a small number of preset configurations, which map each
DiffServ code point into a priority tier. If the shaper is in use, each priority
tier gets its own virtual clock, which limits that tier’s rate to a fraction of the

106 Paper IV

Algorithm 2 Host isolation algorithm.

1: function enqueue(pkt)
2: flow_hash← hash(pkt.hdr)
3: src_hash← hash(pkt.src_ip)
4: dst_hash← hash(pkt.dst_ip)
5: flow← flows[flow_hash]
6: if flow is not active then
7: hosts[src_hash].refcnt_src++
8: hosts[dst_hash].refcnt_dst++
9: flow.active← 1

10: flow.src_id← src_hash
11: flow.dst_id← dst_hash
12: function get_quantum(flow)
13: refcnt_src← hosts[flow.src_id].refcnt_src
14: refcnt_dst← hosts[flow.dst_id].refcnt_dst
15: host_load← max(refcnt_src, refcnt_dst, 1)
16: return flow.quantum/host_load

overall shaped rate. When dequeueing a packet, the algorithm simply picks the
highest-priority tier which both has queued traffic and whose schedule is due,
if one exists. To allow tiers to borrow excess bandwidth from one another, the
dequeue algorithm also tracks the earliest schedule time of all non-empty tiers,
and if no other eligible tier is available, that tier is picked instead (within the
overall shaper limits).

When the shaper is not in use, CAKE instead uses a simple weighted DRR
mechanism to schedule the different priority tiers, with the same weights as the
shaper fractions mentioned above. This has weaker precedence guarantees for
high-priority traffic, but provides the same proportional capacity reservation
and the ability to borrow spare capacity from less than fully loaded tiers.

CAKE defaults to a simple, three-tier mode that interprets most code
points as "best effort", but places CS1 traffic into a low-priority "bulk" tier
which is assigned 1/16 of the total rate, and a few code points indicating
latency-sensitive or control traffic (specifically TOS4, VA, EF, CS6, CS7) into
a "latency sensitive" high-priority tier, which is assigned 1/4 rate. The other
DiffServ modes supported by CAKE are a 4-tier mode matching the 802.11e
precedence rules [17], as well as two 8-tier modes, one of which implements
strict precedence of the eight priority levels.

3.4 ACK filtering
CAKE contains an ACK filtering mechanism that drops redundant ACKs
from a TCP flow. The mechanism takes advantage of the per-flow queueing
by scanning the queue after every packet enqueue, to identify a pure ACK
(i.e., an ACK with no data) that was made redundant by the newly enqueued
packet. An ACK is only filtered if the newly enqueued packet contains
an acknowledgement of strictly more bytes than the one being filtered. In

Piece of CAKE 107

particular, this means that duplicate ACKs are not filtered, so TCP’s fast
retransmit mechanism is not affected. In addition, the filter parses TCP
headers and only drops a packet if that will not result in loss of information at
the sender; and packets with unknown headers are never dropped, to avoid
breaking future TCP extensions. The filter has two modes of operation: a
conservative mode that will always keep at least two redundant ACKs queued,
and an aggressive mode, that only keeps the most recently enqueued ACK.

4 Performance Evaluation
In this section, we present a performance evaluation of CAKE. All tests are
performed on a testbed that emulates a pair of hosts communicating through a
low-bandwidth link. We use the Flent testing tool [23] to run the tests, and the
data files are available on the companion web site.16 Unless otherwise stated
below, all tests are run on a symmetrical 10 Mbps link with 50 ms baseline
latency. Our basic test is the Real-Time Response Under Load test, which
consists of running four TCP flows in each traffic direction, along with three
different latency measurement flows [24].

ca
ke

fq
_c

od
el

ca
ke

fq
_c

od
el

ca
ke

fq
_c

od
el

0

5

10

M
ea

n
TC

P
go

od
pu

t (
M

bi
t/

s)

Download Upload Induced latency (ms)

0.0

0.5

1.0

M
ea

n
in

du
ce

d
la

te
nc

y
(m

s)

Figure 2: Baseline throughput and latency of CAKE and FQ-CoDel on a 10 Mbps
link.

As can be seen in Figure 2, the baseline performance of CAKE is compar-
able to that of FQ-CoDel: both achieve low latency and high throughput in
the baseline test. This is expected, since CAKE is derived from FQ-CoDel.
For a more comprehensive comparison of FQ-CoDel with other queue man-
agement algorithms, we refer the reader to [1]. Instead, the remainder of this
evaluation focuses on the features outlined in the previous sections.

4.1 Host Isolation
To evaluate the host isolation feature of CAKE, we run a varying number
of TCP flows between two source hosts and four destination hosts. Source
host A runs one flow to each of destination hosts A and B, and two flows to

108 Paper IV

A
->
A

A
->
B

A
->
C

A
->
C

B-
>C

B-
>D

A
->
A

A
->
B

A
->
C

A
->
C

B-
>C

B-
>D

A
->
A

A
->
B

A
->
C

A
->
C

B-
>C

B-
>D

A
->
A

A
->
B

A
->
C

A
->
C

B-
>C

B-
>D

A
->
A

A
->
B

A
->
C

A
->
C

B-
>C

B-
>D

0.0

0.5

1.0

1.5

2.0

2.5
M
bi
ts
/s

cake cake_dst cake_src cake_triple fq_codel

Figure 3: Host isolation performance with TCP flows from two source hosts to four
destination hosts. The columns show different algorithms; each bar shows the average
flow goodput.

destination host C, while source host B runs one flow to each of destination
hosts C and D. This makes it possible to demonstrate the various working
modes of CAKE’s host isolation feature.

The result of this test is shown in Figure 3. It shows four configurations
of CAKE (no host isolation, source host isolation, destination host isolation
and triple isolation) and a test with FQ-CoDel as the queue management
algorithm. As can be seen in the figure, both FQ-CoDel and CAKE with no
host isolation provide complete fairness between all six flows.

The figure also clearly shows the various modes of flow isolation supported
by CAKE: In destination fairness mode (second column), the four destination
hosts get the same total share, which results in each of the three flows to
destination host C getting 1/3 of the bandwidth of the three other hosts
(which only have one flow each). Similarly, in source fairness mode (third
column), the two source hosts share the available capacity, which results in
the two flows from source B getting twice the share each compared to the four
flows from host A.

In the triple isolation case, we see the flow bandwidths correspond to
the quantum scaling outlined in Algorithm 2: The first four flows get their
quantum scaled by 1/4 since there are four flows active from host A. The fifth
flow gets its quantum scaled by 1/3 since there are three flows active to host C.
And finally, the last flow gets its quantum scaled by 1/2 as there are two flows
active from host B.

Piece of CAKE 109

4.2 DiffServ Handling
To demonstrate the DiffServ prioritisation features of CAKE we perform two
tests: An RRUL test with each flow marked with a different DiffServ priority,
and another test where a high-priority fixed-rate flow competes with several
TCP flows.

The result of the former test is seen in Figure 4. This shows that when
DiffServ mode is not enabled, all four flows get the same share of the available
bandwidth, while in the DiffServ-enabled case, the Best Effort (BE) flow gets
most of the bandwidth. This latter effect is important for two reasons: First,
it shows that a flow marked as background (BK) is successfully de-prioritised
and gets less bandwidth. Secondly, it shows that the high-priority flows (CS5
and EF) are limited so as to not use more than the share of the bandwidth
allocated to the high-priority DiffServ classes.

BE BK CS
5 EF BE BK CS
5 EF

0

2

4

M
bi

ts
/s

No DiffServ DiffServ4

Figure 4: TCP flows on different DiffServ code points.

To look at the latency performance of a high-priority flow, we turn to
Figure 5. This shows the latency over time of a fixed-rate 2 Mbps flow, which
marks its packets with the high-priority EF DiffServ marking. This is meant
to represent a real-time video conversation. In the test, the flow competes
with 32 bulk TCP flows. As can be seen in the figure, both FQ-CoDel and
CAKE with DiffServ prioritisation disabled fail to ensure low latency for the
high-priority flow. Instead, when the bulk flows start after five seconds, a
large latency spike is seen, since the real-time flow has to wait for the initial
packets of the 32 TCP flows. This causes the real-time flow to build a large
queue for itself (since it does not respond to congestion signals), which then
drains slowly back to a steady state around 200 ms (for CAKE) or oscillating
between 50 and 500 ms (for FQ-CoDel). In contrast, the DiffServ-enabled
CAKE keeps the real-time flow completely isolated from the bulk TCP flows,
ensuring it sees no added latency over the duration of the test.

4.3 ACK Filtering
Figure 6 shows the performance of ACK filtering on a highly asymmetrical
link with 30 Mbps download capacity and only 1 Mbps upload capacity.

110 Paper IV

0 20 40 60 80 100 120 140
Time (s)

0

250

500

750

1000

1250

In
du

ce
d

on
e-

w
ay

 d
el

ay
 (m

s)

Cake Cake DiffServ FQ-CoDel

Figure 5: Latency over time of a 2 Mbps fixed-rate flow with 32 competing bulk flows
on a 10 Mbps link. The Y-axis shows additional latency above the base latency of 50
ms. The bulk flows start after 5 seconds.

On this link, we run four simultaneous TCP uploads and four simultaneous
TCP downloads. The results of this are shown in Figure 6, which shows
the aggregate throughput of all four flows in each direction, along with the
added latency of a separate measurement flow. Values are normalised to the
baseline without ACK filtering to be able to fit on a single graph. As the figure
shows, we see a goodput improvement of around 15% in the downstream
direction caused by either type of ACK filtering, which shows that insufficient
bandwidth for ACKs can impact transfers in the other direction. For upload,
the conservative filtering increases goodput by about 10%, while the aggressive
filtering increases throughput by as much as 40%, simply by reducing the
bandwidth taken up by ACK packets. We attribute the increase in latency to
increased congestion in the downlink direction, which is alleviated somewhat
by fewer ACKs being queued in the upstream direction in the aggressive case.
The absolute magnitude of the latency increase is only 5 ms.

5 Conclusions
CAKE is a comprehensive queue management system for home gateways, that
packs several compelling features into an integrated solution, with reasonable
defaults to ease configuration. These features include: bandwidth shaping with
overhead compensation for various link layers; reasonable DiffServ handling;
improved flow hashing with both per-flow and per-host queueing fairness; and
filtering of TCP ACKs.

Piece of CAKE 111

N
o

fi
lt

er
in

g

Co
ns

er
va

ti
ve

A
gg

re
ss

iv
e

N
o

fi
lt

er
in

g

Co
ns

er
va

ti
ve

A
gg

re
ss

iv
e

N
o

fi
lt

er
in

g

Co
ns

er
va

ti
ve

A
gg

re
ss

iv
e

1.0

1.1

1.2

1.3

1.4
N

or
m

al
is

ed
 m

ea
n

TC
P

go
od

pu
t Download Upload Induced latency

1.0

1.5

2.0

2.5

3.0

N
or

m
al

is
ed

 m
ea

n
in

du
ce

d
la

te
nc

y

Figure 6: ACK filtering performance on a 30/1 Mbps link. The graph scales are
normalised to the "No filtering" case. The download and upload value ranges are
24.5-27.5 Mbps and 0.45-0.7 Mbps, respectively. The latency range is 2.6-7.5 ms.

Our evaluation shows that these features offer compelling advantages, and
we believe CAKE has the potential to significantly improve the perform-
ance of last-mile internet connections. CAKE is open source and ready for
deployment, and already ships in the OpenWrt router firmware distribution.18

Acknowledgements
The authors would like to thank the Bufferbloat and OpenWrt communities
for their work on the implementation and testing of CAKE. In particular,
Kevin Darbyshire-Bryant was instrumental in enabling NAT-awareness, Ryan
Mounce contributed the original ACK filtering code, Sebastian Moeller helped
get the overhead compensation right and Anil Agarwal helped with the hash
collision probability calculations.

References
[1] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the

Bad and the WiFi: Modern AQMs in a Residential Setting,” Computer
Networks, vol. 89, pp. 90 – 106, 2015.

18Since the publication of this paper, CAKE has also been accepted into the upstream Linux
kernel. It is included starting from kernel version 4.19.

112 Paper IV

[2] I. Järvinen and M. Kojo, “Evaluating CoDel, PIE, and HRED AQM
techniques with load transients,” in 39th Annual IEEE Conference on
Local Computer Networks. IEEE, 2014, pp. 159–167.

[3] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block:
Much ado about nothing?” Oslo University, Tech. Rep. 434, 2013.

[4] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: A
Comprehensive Queue Management Solution for Home Gateways,” Apr.
2018. https://doi.org/10.5281/zenodo.1226887

[5] J. Corbet, “Network transmit queue limits,” LWN Article, August 2011.
https://lwn.net/Articles/454390/

[6] T. Høiland-Jørgensen et al., “Ending the Anomaly: Achieving Low
Latency and Airtime Fairness in WiFi,” in 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17). Santa Clara, CA: USENIX Associ-
ation, 2017, pp. 139–151.

[7] G. Niestegge, “The ‘leaky bucket’ policing method in the ATM (Asyn-
chronous Transfer Mode) network,” International Journal of Communic-
ation Systems, vol. 3, no. 2, pp. 187–197, 1990.

[8] A. Eleftheriadis and D. Anastassiou, “Constrained and general dynamic
rate shaping of compressed digital video,” in International Conference on
Image Processing, vol. 3. IEEE, 1995, pp. 396–399.

[9] V. P. Rao, M. P. Tahiliani, and U. K. K. Shenoy, “Analysis of sfqCoDel
for active queue management,” in ICADIWT 2014. IEEE, 2014.

[10] R. Adams, “Active Queue Management: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

[11] N. Benameur, F. Guillemin, and L. Muscariello, “Latency Reduction in
Home Access Gateways with Shortest Queue First,” in ISOCWorkshop
on Reducing Internet Latency, 2013.

[12] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290, RFC Editor,
Jan. 2018.

[13] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-
robin,” IEEE/ACM Transactions on Networking, Jun. 1996.

[14] A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation
using deficit round robin,” 19th International TELETRAFFIC CON-
GRESS, 2005.

[15] A. Kortebi, S. Oueslati, and J. W. Roberts, “Cross-Protect: Implicit
Service Differentiation and Admission Control,” in 2004 Workshop on
High Performance Switching and Routing. IEEE, 2004, pp. 56 – 60.

https://doi.org/10.5281/zenodo.1226887
https://lwn.net/Articles/454390/

Piece of CAKE 113

[16] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for DiffServ
Service Classes,” RFC 4594 (Informational), RFC Editor, Aug. 2006.

[17] T. Szigeti, J. Henry, and F. Baker, “Mapping Diffserv to IEEE 802.11,”
RFC 8325 (Proposed Standard), RFC Editor, Feb. 2018.

[18] W.-S. Hwang and P.-C. Tseng, “A QoS-aware residential gateway with
bandwidth management,” IEEE Transactions on Consumer Electronics,
vol. 51, no. 3, pp. 840–848, 2005.

[19] H. Wu et al., “ACK filtering on bandwidth asymmetry networks,” in
Proceedings of the Fifth Asia-Pacific Conference on Communications and
Fourth Optoelectronic and Communications Conference. IEEE, 1999.

[20] L. Storfer, “Enhancing cable modem TCP performance,” Texas Instru-
ments Inc. white paper, 2003.

[21] H. Kim et al., “On the cross-layer impact of TCP ACK thinning on IEEE
802.11 wireless MAC dynamics,” in 64th Vehicular Technology Conference.
IEEE, 2006.

[22] A. J. Smith, “A comparative study of set associative memory mapping
algorithms and their use for cache and main memory,” IEEE Transactions
on Software Engineering, no. 2, pp. 121–130, 1978.

[23] T. Høiland-Jørgensen et al., “Flent: The FLExible Network Tester,” in
ValueTools 2017, 2017.

[24] D. Taht, “Realtime response under load (rrul) test,” November 2012.
https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/

https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/

VPaper

Reprinted from

Achieving Low Latency and Airtime Fairness in WiFi

Ending the Anomaly

2017 USENIX Annual Technical Conference
(USENIX ATC 17), July 12–14 2017, Santa Clara, CA

“There’s nothing special about wireless networks except
that wireless capacity is sometimes less than what you

can get, for example, from optical fiber.”

Vint Cerf

Ending the Anomaly
Achieving Low Latency and Airtime Fairness in WiFi

Toke Høiland-Jørgensen, Michal Kazior, Dave Täht, Per Hurtig and
Anna Brunstrom

toke.hoiland-jorgensen@kau.se, michal.kazior@tieto.com, dave@taht.net,
per.hurtig@kau.se, anna.brunstrom@kau.se

Abstract

With more devices connected, delays and jitter at the WiFi hop be-
come more prevalent, and correct functioning during network congestion
becomes more important. However, two important performance issues
prevent modern WiFi from reaching its potential: increased latency un-
der load caused by excessive queueing (i.e. bufferbloat) and the 802.11
performance anomaly.

To remedy these issues, we present a novel two-part solution. We
design a new queueing scheme that eliminates bufferbloat in the wireless
setting. Leveraging this queueing scheme, we then design an airtime
fairness scheduler that operates at the access point and doesn’t require
any changes to clients.

We evaluate our solution using both a theoretical model and experi-
ments in a testbed environment, formulating a suitable analytical model
in the process. We show that our solution achieves an order of magnitude
reduction in latency under load, large improvements in multi-station
throughput, and nearly perfect airtime fairness for both TCP and down-
stream UDP traffic. Further experiments with application traffic confirm
that the solution provides significant performance gains for real-world
traffic.We develop a production quality implementation of our solution
in the Linux kernel, the platform powering most access points outside of
the managed enterprise setting. The implementation has been accepted
into the mainline kernel distribution, making it available for deployment
on billions of devices running Linux today.

1 Introduction
As more mobile devices connect to the internet, and internet connections
increase in capacity, WiFi is increasingly the bottleneck for users of the internet.

117

118 Paper V

This means that congestion at the WiFi hop becomes more common, which in
turn increases the potential for bufferbloat at the WiFi link, severely degrading
performance [1].

The 802.11 performance anomaly [2] also negatively affects the perform-
ance of WiFi bottleneck links. This is a well-known property of WiFi net-
works: if devices on the network operate at different rates, the MAC protocol
will ensure throughput fairness between them, meaning that all stations will
effectively transmit at the lowest rate. The anomaly was first described in
2003, and several mitigation strategies have been proposed in the literature
(e.g., [3, 4]), so one would expect the problem to be solved. However, none of
the proposed solutions have seen widespread real-world deployment.

Recognising that the solutions to these two problems are complementary,
we design a novel queue management scheme that innovates upon previous
solutions to the bufferbloat problem by adapting it to support the 802.11 suite
of WiFi protocols. With this queueing structure in place, eliminating the per-
formance anomaly becomes possible by scheduling the queues appropriately.
We develop a deficit-based airtime fairness scheduler to achieve this.

We implement our solution in the WiFi stack of the Linux kernel. Linux
is perhaps the most widespread platform for commercial off-the-shelf routers
and access points outside the managed enterprise, and hundreds of millions of
users connect to the internet through a Linux-based gateway or access point on
a daily basis. Thus, while our solution is generally applicable to any platform
that needs to support WiFi, using Linux as our example platform makes it
possible to validate that our solution is of production quality, and in addition
gives valuable insights into the practical difficulties of implementing these
concepts in a real system.

The rest of this paper describes our solution in detail, and is structured as
follows: Section 2 describes the bufferbloat problem in the context of WiFi
and the WiFi performance anomaly, and shows the potential performance
improvement from resolving them. Section 3 describes our proposed solution
in detail and Section 4 presents our experimental evaluation. Finally, Section 5
summarises related work and Section 6 concludes.

2 Background
In this section we describe the two performance issues we are trying to solve –
Bufferbloat in the WiFi stack and the 802.11 performance anomaly. We explain
why these matter, and show the potential benefits from solving them.

2.1 Bufferbloat in the context of WiFi
Previous work on eliminating bufferbloat has shown that the default buffer
sizing in many devices causes large delays and degrades performance. It also
shows that this can be rectified by introducing modern queue management to
the bottleneck link [1, 5, 6]. However, this does not work as well for WiFi;
prior work has shown that neither decreasing buffer sizes [7] nor applying

Ending the Anomaly 119

10
00

 *

Q
di

sc
 la

ye
r

M
A

C
la

ye
r

at
h9

k
dr

iv
er

*Can be replaced with an
arbitrary configuration

Per HW queue
(x4)

2
ag

gr

FIFO

FIFO*

buf_q retry_q

TID

12
3

Prio

buf_q retry_q

TID

RR

Assign TID

Retries

To hardware

12
3

Prio

Figure 1: The queueing structure of the Linux WiFi stack.

120 Paper V

queue management algorithms to the WiFi interface [1] can provide the same
reduction in latency under load as for wired links.

The reason for the limited effect of prior solutions is queueing in the
lower layers of the wireless network stack. For Linux, this is clearly seen
in the queueing structure, depicted in Figure 1. The upper queue discipline
("qdisc") layer, which is where the advanced queue management schemes can
be installed, sits above both the mac80211 subsystem (which implements the
base 802.11 protocol) and the driver. As the diagram shows, there is significant
unmanaged queueing in these lower layers, limiting the efficacy of the queue
management schemes and leading to increased delay. Such a design is typical
for an environment where low-level protocol details impose a certain queueing
structure (as opposed to a wired Ethernet network, where the protocol-specific
processing performed by the driver does not necessitate queueing). In WiFi
this queueing is needed to build aggregates (and to a lesser extent to keep the
hardware busy within the time constrains imposed by the protocol), but a
similar situation can be seen in, e.g., mobile broadband devices, DSL modem
drivers, and even in some VPN protocols, where the encryption processing
can require a separate layer of queueing.

To solve this, an integrated queueing scheme is needed, that applies modern
queue management to the protocol-specific queueing structures. In Section 3
we describe our design of such a solution for the WiFi domain. Figure 2
showcases the gain from applying our solution. The figure shows a latency
measurement (ICMP ping) performed simultaneously with a simple TCP
download to each of the stations on the network. The dashed line shows the
state of the Linux kernel before we applied our solution, with several hundred
milliseconds of added latency. The solid line shows the effects of applying
the solution we propose in this paper – a latency reduction of an order of
magnitude.

101 102 103

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

With our solution Without our solution

Figure 2: Latency of an ICMP ping flow with simultaneous TCP download traffic,
before and after our modifications.

Ending the Anomaly 121

2.2 Airtime fairness
The 802.11 performance anomaly was first described for the 802.11b standard
in [2], which showed that in a wireless network with differing rates, each
station would achieve the same effective throughput even when their rates
were different. Later work has shown both analytically and experimentally that
time-based fairness improves the aggregate performance of the network [3],
and that the traditional notion of proportional fairness [8] translates to airtime
fairness when applied to a WiFi network [9].

This latter point is an important part of why airtime fairness is desirable –
proportional fairness strikes a balance between network efficiency and allowing
all users a minimal level of service. Since a wireless network operates over a
shared medium (the airwaves), access to this medium is the scarce resource
that needs to be regulated. Achieving airtime fairness also has the desirable
property that it makes a station’s performance dependent on the number of
active stations in the network, and not on the performance of each of those
other stations.

The addition of packet aggregation to WiFi (introduced in 802.11n and
also present in 802.11ac) adds some complexity to the picture. To quantify the
expected gains of airtime fairness in the context of these newer revisions of
802.11, the following section develops an analytical model to predict through-
put and airtime usage.

2.2.1 An analytical model for 802.11 with aggregation

The models in [2] and [3] give analytical expressions for expected throughput
and airtime share for 802.11b (the latter also under the assumption of airtime
fairness). Later work [10] updates this by developing analytical expressions
for packet sizes and transmission times for a single station using 802.11n.
However, this work does not provide expressions for predicting throughput
and airtime usage. In this section we expand on the work of [10] to provide
such an expression. While we focus on 802.11n here, the 802.11ac standard
is backwards-compatible with 802.11n as far as the aggregation format is
concerned, so these calculations apply to the newer standard as well.

For the following exposition, we assume a set of active stations, I . Each
station, i, transmits aggregates of a fixed size of Li bytes. In practice, the
aggregates are composed of data packets, plus overhead and padding. The
802.11n standard permits two types of aggregation (known as A-MPDU
and A-MSDU), which differ in how they combine packets into MAC-layer
aggregates. For A-MPDU aggregation (which is the most common in use in
802.11n devices), the size of an aggregate consisting of ni packets of size li is
given by:

Li = ni (li + Ldel im + Lmac + LF C S + Lpad) (1)

where Ldel im,Lmac ,LF C S,Lpad are, respectively, the frame delimiter, MAC
header, frame check sequence and frame padding. However, these details
are not strictly necessary for our exposition, so we leave them out in the

122 Paper V

Table 1: Calculated airtime, calculated rate and measured rate for the three stations
(two fast and one slow) in our experimental setup. The aggregation size is the measured
mean aggregation size (in bytes) from our experiments and the measured rates (Exp
column) are mean UDP throughput values.

Aggr
size

T (i) Rates (Mbps)

PHY Base R(i) Exp

Baseline (FIFO queue)1
6892 10% 144.4 97.3 9.7 7.1
7833 11% 144.4 101.1 11.4 6.3
2914 79% 7.2 6.5 5.1 5.3

Total 26.4 18.7

Airtime Fairness
28434 33% 144.4 126.7 42.2 38.8
28557 33% 144.4 126.8 42.3 35.6
2914 33% 7.2 6.5 2.2 2.0

Total 86.8 76.4

following and instead refer to [10] for a nice overview of the details of aggregate
composition.

A station transmits data over the air at a particular data rate ri (measured
in bits per second). So the time to transmit the data portion of an aggregate is
simply:

Tdat a (i) =
8Li
ri

(2)

From this we can compute the expected effective station rate, assuming no
errors or collisions, and no other active stations:

R0 (i) =
Li

Tdat a (i) +Toℎ
(3)

where Toℎ is the per-transmission overhead, which consists of the frame
header, the inter-frame spacing, the average block acknowledgement time, and
the average back-off time before transmission. We again leave out the details
and point interested readers to [10, 11].

Turning to airtime fairness, we borrow two insights from the analysis
in [3]:

1. The rate achieved by station i is simply given by the baseline rate it can
achieve when no other stations are present (i.e., R0 (i)) multiplied by
the share of airtime available to the station.

1The aggregation size and throughput values vary quite a bit for this test, because of the
randomness of the FIFO queue emptying and filling. We use the median value over all repetitions
of the per-test mean throughput and aggregation size; see the online appendix for graphs with
error bars.

Ending the Anomaly 123

2. When airtime fairness is enforced, the airtime is divided equally among
the stations (by assumption). When it is not, the airtime share of
station i is the ratio between the time that station spends on a single
transmission (i.e., Tdat a (i)) and the total time all stations spend doing
one transmission each.

With these points in mind, we express the expected airtime share T (i) and
rate R(i) as:

T (i) =
{ 1
|I | with fairness
Tdat a (i)∑
j∈I Tdat a (j)

otherwise
(4)

R(i) = T (i)R0 (i) (5)

Using the above, we can calculate the expected airtime share and effect-
ive rate for each station in our experimental setup. The assumption of no
contention holds because all data is transmitted from the access point. As
the queueing structure affects the achievable aggregation level (and thus the
predictions of the model), we use the measured average aggregation levels in
our experiments as input to the model.

The model predictions, along with the actual measured throughput in
our experiments, are shown in Table 1. The values will be discussed in more
detail in Section 4, so for now we will just remark that this clearly shows
the potential of eliminating the performance anomaly: An increase in total
throughput by up to a factor of five.

3 Our solution
We focus on the access point scenario in formulating our solution, since a
solution that only requires modifying the access point makes deployment
easier as there are fewer devices to upgrade. However, WiFi client devices can
also benefit from the proposed queueing structure. And while we have focused
on 802.11n here, the principles apply equally to both earlier (802.11abg) and
newer (802.11ac) standards. The rest of this section describes the two parts of
our solution, and outlines the current implementation status in Linux.

3.1 A bloat-free queueing structure for 802.11
An operating system networking stack has many layers of intermediate queueing
between different subsystems, each of which can add latency. For specialised
systems, it is possible to remove those queues entirely, which achieves signific-
ant latency reductions [12]. While such a radical restructuring of the operating
system is not always possible, the general principle of collapsing multiple
layers of queues can be applied to the problem of reducing bufferbloat in WiFi.

As mentioned in Section 2.1, an integrated queueing structure is needed
to deal with protocol-specific constraints while still eliminating bufferbloat.

124 Paper V

What we propose here is such an integrated structure that is specifically suited
to the 802.11 MAC. The components we use to build this structure already
exists in various forms; the novelty of our solution lies in their integration,
and some algorithmic innovations to make the implementation feasible, even
on small devices.

There are three main constraints we must take into account when designing
our queueing scheme. First, we must be able to handle aggregation; the 802.11e
standard specifies that packets can be assigned different Traffic Identifiers
(TIDs) (typically based on their DiffServ markings [13]), and the 802.11n
standard specifies that aggregation be performed on a per-TID basis. Second,
we must have enough data processed and ready to go when the hardware wins
a transmit opportunity; there is not enough time to do a lot of processing at
that time. Third, we must be able to handle packets that are re-injected from
the hardware after a failed transmission; these must be re-transmitted ahead of
other queued packets, as transmission can otherwise stall due to a full Block
Acknowledgement Window.

The need to support aggregation, in particular, has influenced our proposed
design. A generic packet queueing mechanism, such as that in the Linux
qdisc layer (see Section 2.1), does not have the protocol-specific knowledge
to support the splitting of packets into separate queues, as is required for
aggregation. And introducing an API to communicate this knowledge to the
qdisc layer would impose a large complexity cost on this layer, to the detriment
of network interfaces that do not have the protocol-specific requirements. So
rather than modifying the generic queueing layer, we bypass it completely,
and instead incorporate the smart queue management directly into the 802.11
protocol-specific subsystem. The main drawback of doing this is, of course,
a loss of flexibility. With this design, there is no longer a way to turn off
the smart queue management completely; and it does add some overhead to
the packet processing. However, as we will see in the evaluation section, the
benefits by far outweigh the costs.

We build our smart queue management solution on the FQ-CoDel queue
management scheme, which has been shown to be a best-in-class bufferbloat
mitigation technique [1, 5, 6]. The original FQ-Codel algorithm is a hybrid
fairness queueing and AQM algorithm [14]. It functions as a Deficit Round-
Robin (DRR) scheduler [15] between flows, hashing packets into queues based
on their transport protocol flows, and applying the CoDel AQM separately
to each queue, in order to keep the latency experienced by each flow under
control. FQ-CoDel also adds an optimisation for sparse flows to the basic
DRR algorithm. This optimisation allows flows that use less than their fair
share of traffic to gain scheduling priority, reducing the time their packets
spend in the queue. For a full explanation of FQ-CoDel, see [14].

FQ-CoDel allocates a number of sub-queues that are used for per-flow
scheduling, and so simply assigning a full instance of FQ-CoDel to each TID is
impractical. Instead, we innovate on the FQ-CoDel design by having it operate
on a fixed total number of queues, and group queues based on which TID they
are associated with. So when a packet is hashed and assigned to a queue, that

Ending the Anomaly 125

Algorithm 3 802.11 queue management algorithm - enqueue.

1: function enqueue(pkt, tid)
2: if queue_limit_reached() then . Global limit
3: drop_queue← find_longest_queue()

4: drop(drop_queue.head_pkt)
5: queue← hash(pkt)
6: if queue.tid ≠ NULL and queue.tid ≠ tid then
7: queue← tid.overflow_queue . Hash collision
8: queue.tid← tid
9: timestamp(pkt) . Used by CoDel at dequeue

10: append(pkt, queue)
11: if queue is not active then
12: list_add(queue, tid.new_queues)

queue is in turn assigned to the TID the packet is destined for. In case that
queue is already active and assigned to another TID (which means that a hash
collision has occurred), the packet is instead queued to a TID-specific overflow
queue.20 A global queue size limit is kept, and when this is exceeded, packets
are dropped from the globally longest queue, which prevents a single flow
from locking out other flows on overload. The full enqueue logic is shown in
Algorithm 3.

The lists of active queues are kept in a per-TID structure, and when a
TID needs to dequeue a packet, the FQ-CoDel scheduler is applied to the
TID-specific lists of active queues. This is shown in Algorithm 4.

The obvious way to handle the two other constraints mentioned above
(keeping the hardware busy, and handling retries), is, respectively, to add a
small queue of pre-processed aggregates, and to add a separate priority queue
for packets that need to be retried. And indeed, this is how the ath9k driver
already handled these issues, so we simply keep this. The resulting queueing
structure is depicted in Figure 3.

3.2 Airtime fairness scheduling
Given the above queueing structure, achieving airtime fairness becomes a
matter of measuring the airtime used by each station, and appropriately
scheduling the order in which stations are served. For each packet sent or
received, the packet duration can either be extracted directly from a hardware
register, or it can be calculated from the packet length and the rate at which it
was sent (including any retries). Each packet’s duration is subtracted from a
per-station airtime deficit which is used by a deficit scheduler, modelled after
FQ-CoDel, to decide the destination station ahead of each transmission. The
decision to keep the deficit per station instead of per TID follows from the fact

20A hash collision can of course also mean that two flows assigned to the same TID end up in
the same queue. In this case, no special handling is needed, and the two flows will simply share a
queue like in any other hash-based fairness queueing scheme.

126 Paper V

Qdisc layer (bypassed)

M
A

C
la

ye
r

at
h9

k
dr

iv
er

HW queue
(x4)

2
ag

gr

FIFO

RR

Assign TID

Retries

To hardware

retry_q

TID

Prio

Split flows

81
92

(G
lo

ba
l l

im
it

)

retry_q

TID

FQ-
CoDel

Prio

Split flows

81
92

(G
lo

ba
l l

im
it

)

FQ-
CoDel

Figure 3: Our 802.11-specific queueing structure, as it looks when applied to the Linux
WiFi stack.

Ending the Anomaly 127

Algorithm 4 802.11 queue management algorithm - dequeue.

1: function dequeue(tid)
2: if tid.new_queues is non-empty then
3: queue← list_first(tid.new_queues)
4: else if tid.old_queues is non-empty then
5: queue← list_first(tid.old_queues)
6: else
7: return NULL
8: if queue.deficit ≤ 0 then
9: queue.deficit← queue.deficit + quantum

10: list_move(queue, tid.old_queues)
11: restart
12: pkt← codel_dequeue(queue)
13: if pkt is NULL then . queue empty
14: if queue ∈ tid.new_queues then
15: list_move(queue, tid.old_queues)
16: else
17: list_del(queue)
18: queue.tid← NULL
19: restart
20: queue.deficit← queue.deficit − pkt.length
21: return pkt

that the goal of airtime fairness is to even out differences in the physical signal
conditions, which is a per-station property. However, because the four 802.11
QoS precedence markings (VO, VI, BE and BK) are commonly scheduled
independently down to the hardware level, we actually keep four deficits per
station, corresponding to the four precedence levels, to simplify the scheduler
implementation.

The resulting airtime fairness scheduler is shown in Algorithm 5. It is
similar to the the FQ-CoDel dequeue algorithm, with stations taking the
place of flows, and the deficit being accounted in microseconds instead of
bytes. The two main differences are (1) that the scheduler function loops
until the hardware queue becomes full (at two queued aggregates), rather than
just dequeueing a single packet; and (2) that when a station is chosen to be
scheduled, it gets to build a full aggregate rather than a single packet.

Compared to the closest previously proposed solution [16], our scheme
has several advantages:

1. We lower implementation complexity by leveraging existing information
on per-aggregate transmission rates and time, and by using a per-station
deficit instead of token buckets, which means that no token bucket
accounting needs to be performed at TX and RX completion time.

2. [16] measures time from an aggregate is submitted to the hardware until
it is sent, which risks including time spent waiting for other stations
to transmit. We increase accuracy by measuring the actual time spent

128 Paper V

transmitting, and by also accounting the airtime from received frames
to each station’s deficit.

3. We improve on the basic scheduler design by adding an optimisation for
sparse stations, analogous to FQ-CoDel’s sparse flow optimisation. This
improves latency for stations that only transmit occasionally, by giving
them temporary priority for one round of scheduling. We apply the
same protection against gaming this mechanism that FQ-CoDel does to
its sparse flow mechanism [14].

Algorithm 5 Airtime fairness scheduler. The schedule function is called on packet
arrival and on transmission completion.

1: function schedule

2: while hardware queue is not full do
3: if new_stations is non-empty then
4: station← list_first(new_stations)
5: else if old_stations is non-empty then
6: station← list_first(old_stations)
7: else
8: return
9: deficit← station.deficit[pkt.qoslvl]

10: if deficit ≤ 0 then
11: station.deficit[pkt.qoslvl]← deficit + quantum
12: list_move(station, old_stations)
13: restart
14: if station’s queue is empty then
15: if station ∈ new_stations then
16: list_move(station, old_stations)
17: else
18: list_del(station)
19: restart
20: build_aggregate(station)

3.3 Implementation
We have implemented our proposed queueing scheme in the Linux kernel,
modifying the mac80211 subsystem to include the queueing structure itself,
and modifying the ath9k and ath10k drivers for Qualcomm Atheros 802.11n
and 802.11ac chipsets to use the new queueing structure. The airtime fairness
scheduler implementation is limited to the ath9k driver, as the ath10k driver
lacks the required scheduling hooks.

Our modifications have been accepted into the mainline Linux kernel,
different parts going into kernel releases 4.8 through 4.11, and is included in the
LEDE open source router firmware from release 17.01. The implementation

Ending the Anomaly 129

is available online, as well as details about our test environment and the full
evaluation dataset.21

4 Evaluation
We evaluate our modifications in a testbed setup consisting of five PCs: Three
wireless clients, an access point, and a server located one Gigabit Ethernet hop
from the access point, which serves as source and sink for the test flows. All
the wireless nodes are regular x86 PCs equipped with PCI-Express Qualcomm
Atheros AR9580 adapters (which use the ath9k driver). Two of the test clients
are placed in close proximity to the access point (and are referred to as fast
nodes), while the last (referred to as the slow node) is placed further away and
configured to only support the MCS0 rate, giving a maximum throughput
to that station of 7.2 Mbps at the PHY layer. A fourth virtual station is
added as an additional fast node to evaluate the sparse station optimisation (see
Section 4.1.4 below). All tests are run in HT20 mode on an otherwise unused
channel in the 5Ghz band. We use 30 test repetitions of 30 seconds each unless
noted otherwise.

The wireless nodes run an unmodified Ubuntu 16.04 distribution. The ac-
cess point has had its kernel replaced with a version 4.6 kernel from kernel.org
on top of which we apply our modifications. We run all experiments with
four queue management schemes, as follows:

FIFO: The default 4.6 kernel from kernel.org modified only to collect the
airtime used by stations, running with the default PFIFO queueing discipline
installed on the wireless interface.

FQ-CoDel: As above, but using the FQ-CoDel qdisc on the wireless
interface.

FQ-MAC: Kernel patched to include the FQ-CoDel based intermediate
queues in the MAC layer (patching the mac80211 subsystem and the ath9k
driver).

Airtime fair FQ: As FQ-MAC, but additionally including our airtime
fairness scheduler in the ath9k driver.

Our evaluation is split into two parts. First, we validate the effects of the
modifications in simple scenarios using synthetic benchmark traffic. Second,
we evaluate the effect of our modifications on two application traffic scenarios,
to verify that they provide a real-world benefit.

4.1 Validation of effects
In this section we present the evaluation of our modifications in simple syn-
thetic scenarios designed to validate the correct functioning of the algorithms
and to demonstrate various aspects of their performance.

21See https://www.cs.kau.se/tohojo/airtime-fairness/ for the online appendix that
contains additional material, as well as the full experimental dataset and links to the relevant
Linux code.

https://www.cs.kau.se/tohojo/airtime-fairness/

130 Paper V

10 100 1000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
pr

ob
ab

ili
ty

Slow - FQ-MAC

Fast - FQ-MAC

Slow - FQ-CoDel

Fast - FQ-CoDel

Slow - FIFO

Fast - FIFO

Figure 4: Latency (ICMP ping) with simultaneous TCP download traffic.

4.1.1 Latency reductions

Figure 4 is the full set of results for our ICMP latency measurements with
simultaneous TCP download traffic (of which a subset was shown earlier in
Figure 2). Here, the FIFO case shows several hundred milliseconds of latency
when the link is saturated by a TCP download. FQ-CoDel alleviates this
somewhat, but the slow station still sees latencies of more than 200 ms in
the median, and the fast stations around 35 ms. With the FQ-MAC queue
restructuring, this is reduced so that the slow station now has the same median
latency as the fast one does in the FQ-CoDel case, while the fast stations get
their latency reduced by another 45%. The airtime scheduler doesn’t improve
further upon this, other than to alter the shape of the distribution slightly for
the slow station (but retaining the same median). For this reason, we have
omitted it from the figure to make it more readable.

For simultaneous upload and download the effect is similar, except that in
this case the airtime scheduler slightly worsens the latency to the slow station,
because it is scheduled less often to compensate for its increased airtime usage
in the upstream direction. The graph of this case can be found in the online
appendix.

4.1.2 Airtime usage

Figure 5 shows the airtime usage of the three active stations for one-way UDP
traffic going to the stations. There is no reverse traffic and no contention
between stations, since only the access point is transmitting data. This is the

Ending the Anomaly 131

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

Fa
st

 1
Fa

st
 2

Sl
ow

0.0

0.2

0.4

0.6

0.8

1.0
Ai

rt
im

e s
ha

re
FIFO FQ-CoDel FQ-MAC Airtime fair FQ

Figure 5: Airtime usage for one-way UDP traffic. Each column shows the relative
airtime usage of one of the three stations, with the four sections corresponding to the
four queue management schemes.

simplest case to reason about and measure, and it clearly shows the perform-
ance anomaly is present in the current Linux kernel (left half of the figure):
The third station (which transmits at the lowest rate) takes up around 80% of
the available airtime, while the two other stations share the remaining 20%.

The differences between the first two columns and the third column are
due to changes in aggregation caused by the change to the queueing structure.
In the FIFO and FQ-CoDel cases, there is a single FIFO queue with no
mechanism to ensure fair sharing of that queue space between stations. So
because the slow station has a lower egress rate, it will build more queue until
it takes up the entire queueing space. This means that there are not enough
packets queued to build sufficiently large aggregates for the fast stations to use
the airtime effectively. The FQ-MAC queueing scheme drops packets from
the largest queue on overflow, which ensures that the available queueing space
is shared between stations, which improves aggregation for the fast stations
and thus changes the airtime shares. Referring back to Table 1, the values
correspond well to those predicted by the analytical model. The fourth column
shows the airtime fairness scheduler operating correctly – each station receives
exactly the same amount of airtime in this simple one-way test.

Going beyond the simple UDP case, Figure 6 shows Jain’s fairness index for
the airtime of the four different schemes for UDP (for comparison) and both
unidirectional (to the clients) and bidirectional (simultaneous up and down)
TCP traffic. The same general pattern is seen with TCP as with UDP traffic:
The performance anomaly is clear for the FIFO case, but somewhat lessened
for the FQ-CoDel and FQ-MAC cases. The airtime fairness scheduler achieves
close to perfect sharing of airtime in the case of uni-directional traffic, with a

132 Paper V

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r

UD
P

TC
P

dl
TC

P
bi

di
r0.0

0.2

0.4

0.6

0.8

1.0
Fa

irn
es

s i
nd

ex
FIFO FQ-CoDel FQ-MAC Airtime fair FQ

Figure 6: Jain’s fairness index (computed over the airtime usage of the three stations)
for UDP traffic, TCP download, and simultaneous TCP upload and download traffic.

slight dip for bidirectional traffic. The latter is because the scheduler only exerts
indirect control over the traffic sent from the clients, and so cannot enforce
perfect fairness as with the other traffic types. However, because airtime is
also accounted for received packets, the scheduler can partially compensate,
which is why the difference between the unidirectional and bidirectional cases
is not larger than it is.

4.1.3 Effects on throughput

As was already shown in Table 1, fixing the performance anomaly improves
the efficiency of the network for unidirectional UDP traffic. Figure 7 shows
the throughput for downstream TCP traffic. For this case, the fast stations
increase their throughput as fairness goes up, and the slow station decreases its
throughput. The total effect is a net increase in throughput. The increase from
the FIFO case to FQ-CoDel and FQ-MAC is due to better aggregation for
the fast stations. This was observed for UDP as well in the case of FQ-MAC,
but for FQ-CoDel the slow station would occupy all the queue space in the
driver, preventing the fast station from achieving full aggregation. With the
TCP feedback loop in place, this lock-out behaviour is lessened, and so fast
stations increase their throughput.

When traffic is flowing in both directions simultaneously, the pattern is
similar, but with a slightly higher variance. The graph for the bidirectional
case can be found in the online appendix.

Ending the Anomaly 133

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e

FI
FO

FQ
-C

oD
el

FQ
-M

AC
Ai

rt
im

e0

10

20

30

40
M

bi
ts

/s
Station 1 Station 2 Station 3 Average

Figure 7: Throughput for TCP download traffic (to clients).

4.1.4 The sparse station optimisation

To evaluate the impact of the sparse station optimisation, we add a fourth
station to our experiments which receives only a ping flow, but no other traffic,
while the other stations receive bulk traffic as above. We measure the latency
to this extra station both with and without the sparse station optimisation.
The results of this are shown in Figure 8. For both UDP and TCP download
traffic, the optimisation achieves a small, but consistent, improvement: The
round-trip latency to the fourth station is reduced by 10 to 15% (in the median)
when the optimisation is in place.

4.1.5 Scaling to more stations

While the evaluations presented in the previous sections have shown that our
modifications work as planned, and that they provide a substantial benefit in a
variety of scenarios, one question is left unanswered – does the solution scale
to more stations? To answer this, we arranged for an independent third party
to repeat a subset of our tests in their testbed, which features an access point
and 30 clients. The nodes are all embedded wireless devices from a commercial
vendor that bases its products on the OpenWrt/LEDE open-source router
platform, running a LEDE firmware development snapshot from November
2016.

In this setup, one of the 30 clients is artificially limited to only transmit at
the lowest possible rate (1 Mbps, i.e. disabling HT mode), while the others
are configured to select their rate in the usual way, on a HT20 channel in the
2.4 Ghz band. One of the 29 “fast” clients only receives ping traffic, leaving 28
stations to contend with the slow 1 Mbps station for airtime and bandwidth.

134 Paper V

5 10 15 20 25 30
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e p
ro

ba
bi

lit
y

Enabled (UDP)
Disabled (UDP)
Enabled (TCP)
Disabled (TCP)

Figure 8: The effects of the sparse station optimisation.

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s i

nd
ex

(a) Airtime usage fairness

FQ
-C
oD
el

FQ
-M
AC

Ai
rt
im
e0

5

10

15

M
bi
ts
/s

(b) Aggregate throughput

Figure 9: Aggregate results for the 30 stations TCP test.

Ending the Anomaly 135

In this environment, our downstream TCP experiment presented above
was repeated, with the difference that each test was run for five minutes, but
with only five repetitions, and without the FIFO test case. A subset of these
results are shown in figures 9 and 10. From this experiment, we make several
observations:

1. When the slow station is at this very low rate, it manages to grab
around two thirds of the available airtime, even with 28 other stations
to compete with. However, our airtime fairness scheduler manages to
achieve completely fair sharing of airtime between all 29 stations. This
is reflected in the fairness index as seen in Figure 9a.

2. As seen in Figure 9b, total throughput goes from a mean of 3.3 Mbps
for the FQ-CoDel case to 17.7 Mbps with the airtime scheduler. That is,
the relative throughput gain with airtime fairness is 5.4x in this scenario.

3. As can be expected, with the airtime fairness scheduler, the latency to
the fast stations is improved with the increased throughput (Figure 10,
orange lines). However, the latency to the slow station increases by an
order of magnitude in the median, as it is throttled to stay within its fair
share of the airtime (Figure 10, dotted green line). Overall, the average
latency to all stations is improved by a factor of two (not shown on the
figure).

4. With 30 stations, we see the sparse station optimisation being even more
effective; in this scenario it reduces latency to the sparse station by a
factor of two (not shown in the figures; see the online appendix).

Finally, we verify the in-kernel airtime measurement against a tool de-
veloped by the same third party that measures airtime from captures taken
with a monitor device. We find that the two types of measurements agree to
within 1.5%, on average.

4.2 Effects on real-world application performance
In the previous section we evaluated our solution in a number of scenarios
that verify its correct functioning and quantify its benefits. In this section we
expand on that validation by examining how our modifications affect perform-
ance of two important real-world applications – VoIP and web browsing.

4.2.1 VoIP

VoIP is an important latency-sensitive application which it is desirable to have
working well over WiFi, since that gives mobile handsets the flexibility of
switching between WiFi and cellular data as signal conditions change. To
evaluate our modifications in the context of VoIP traffic, we measure VoIP
performance when mixed with bulk traffic. As in Section 4.1.4 we include a
virtual station as another fast station, and so these scenarios have three fast

136 Paper V

0 250 500 750 1000 1250 1500 1750 2000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e p
ro

ba
bi

lit
y

Slow - FQ-CoDel
Fast - FQ-CoDel
Slow - FQ-MAC
Fast - FQ-MAC
Slow - Airtime
Fast - Airtime

Figure 10: Latency for the 30 stations TCP test.

stations. Due to space constraints, we only include the case where the slow
station receives both VoIP traffic and bulk traffic, while the fast stations receive
bulk traffic. The other cases show similar relative performance between the
different queue management schemes.

The QoS markings specified in the 802.11e standard can be used to im-
prove the performance of VoIP traffic, and so we include this aspect in our
evaluation. 802.11e specifies four different QoS levels, of which voice (VO)
has the highest priority. Packets transmitted with this QoS marking gets both
queueing priority and a shorter contention window, but cannot be aggregated.
This difference can dramatically reduce the latency of the traffic, at a cost in
throughput because of the lack of aggregation. We repeat the voice experi-
ments in two variants – one where the VoIP packets are sent as best effort (BE)
traffic, and one where they are put into the high-priority VO queue. We also
repeat the tests with a baseline one-way delay of both 5 ms and 50 ms.

To serve as a metric of voice quality, we calculate an estimate of the Mean
Opinion Score (MOS) of the VoIP flow according to the E-model specified
in the ITU-T G.107 recommendation [17]. This model can predict the MOS
from a range of parameters, including the network conditions. We fix all audio
and codec related parameters to their default values and calculate the MOS
estimate based on the measured delay, jitter and packet loss. The model gives
MOS values in the range from 1 − 4.5.

Table 2 shows the results. This shows that throughput follows the trends
shown in previous tests, as expected. Also as expected, the FIFO and FQ-
CoDel cases have low MOS values when the voice traffic is marked as BE, and
higher values when using the VO queue. However, both the FQ-MAC and
airtime fairness schemes achieve better MOS values with best-effort traffic than
the unmodified kernel does with VO-marked traffic. In the FQ-MAC and

Ending the Anomaly 137

Table 2: MOS values and total throughput when using different QoS markings for
VoIP traffic. Data for 5 ms and 50 ms baseline one-way delay.

5 ms 50 ms

QoS MOS Thrp MOS Thrp

FIFO VO 4.17 27.5 4.13 21.6
BE 1.00 28.3 1.00 22.0

FQ-CoDel VO 4.17 25.5 4.08 15.2
BE 1.24 23.6 1.21 15.1

FQ-MAC VO 4.41 39.1 4.38 28.5
BE 4.39 43.8 4.37 34.0

Airtime VO 4.41 56.3 4.38 49.8
BE 4.39 57.0 4.37 49.7

airtime cases, using the VO queue still gives a slightly better MOS score than
using the BE queue does; but the difference is less than half a percent. This
is an important improvement, because it means that with our modifications,
applications can rely on excellent real-time performance even when unable
to control DiffServ markings, as well as when the markings are removed in
transit.

4.2.2 Web

Another important real-world application is web traffic. To investigate the
impact of our modifications on this, we measure page load time (PLT) with
emulated web traffic. Our test client mimics the common web browser
behaviour of fetching multiple requests in parallel over four different TCP
connections. We simply measure the total time to fetch a web site and all its
attached resources (including the initial DNS lookup) for two different pages –
a small page (56 KB data in three requests) and a large page (3 MB data in 110
requests). We run the experiments in two scenarios. One where a fast station
fetches the web sites while the slow station runs a simultaneous bulk transfer,
to emulate the impact of a slow station on the browsing performance of other
users on the network. And another scenario where the slow station fetches the
web sites while the fast stations run simultaneous bulk transfers, to emulate
the browsing performance of a slow station on a busy network.

The results for the fast station are seen in Figure 11. Fetch times decrease
from the FIFO case as the slowest to the airtime fair FQ case as the fastest. In
particular, there is a an order-of-magnitude improvement when going from
FIFO to FQ-CoDel, which we attribute to the corresponding significant
reduction in latency seen earlier.

When the slow station is fetching the web page, adding airtime fairness
increases page load time by 5 − 10%. This is as expected since in this case the

138 Paper V

FI
FO

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e

FI
FO

FQ
-C

oD
el

FQ
-M

AC

Ai
rt

im
e

1 0 0

1 0 1

M
ea

n
do

w
nl

oa
d

tim
e (

s)
Small page Large page

Figure 11: HTTP page fetch times for a fast station (while the slow station runs a bulk
transfer). Note the log scale - the fetch time for the large page is 35 seconds for the FIFO
case.

slow station is being throttled. The graph for this can be found in the online
appendix.

4.3 Summary
Our evaluation shows that our modifications achieve their design goal. We
eliminate bufferbloat and the 802.11 performance anomaly, and achieve close
to perfect airtime fairness even when station rates vary; and our solution scales
successfully as more clients are added. We improve total throughput by up to
a factor of five and reduce latency under load by up to an order of magnitude.
We also achieve close to perfect airtime fairness in a scenario where traffic is
mixed between upstream and downstream flows from the different stations.
Finally, the optimisation that prioritises sparse stations achieves a consistent
improvement in latency to stations that only receive a small amount of traffic.

In addition, we show that our modifications give significant performance
increases for two important real-world applications – VoIP and web traffic. In
the case of VoIP, we manage to achieve better performance with best effort
traffic than was achievable with traffic marked as Voice according to the 802.11e
QoS standard. For web traffic we achieve significant reductions in page load
times.

Finally, even though our evaluation scenario only features a limited number
of stations, we have sought to represent a challenging scenario, by having high
congestion rates and a large difference between the station rates. As such, we
believe that it serves well as a validation of the effects. In addition, the feedback

Ending the Anomaly 139

we have received from users of the code indicates that our solution works well
in a variety of deployments.

5 Related work
There have been several previous studies on bufferbloat and its mitigations
(e.g. [5, 6]), but only a few that deal with the problem in a WiFi-specific
context. [1] and [6] both feature a WiFi component in a larger evaluation of
bufferbloat mitigation techniques and show that while these techniques can
help on a WiFi link, the lower-level queueing in the WiFi stack prevents a
full solution of the problem in this space. [7] draws similar conclusions while
looking at buffer sizing (but only mentions AQM-based solutions briefly).
Finally, [18] touches upon congestion at the WiFi hop and uses different
queueing schemes to address it, but in the context of a centralised solution
that also seek to control fairness in the whole network. None of these works
actually provide a solution for bufferbloat at the WiFi link itself, as we present
here.

Several different schemes to achieve fairness based on modifying the con-
tention behaviour of nodes are presented in [4, 9, 19–22]. [9] and [19] both
propose schemes that use either the 802.11e TXOP feature to allocate equal-
length to all stations, or scaling of the contention window by the inverse of
the transmission rate to achieve fairness. [4] develops an analytical model to
predict the values to use for a similar scaling behaviour, which is also verified
in simulation. [20] presents a modified contention behaviour that can lower
the number of collisions experienced, but they do not verify the effect of their
schemes on airtime fairness. [21] proposes a modification to the DCF based
on sensing the idle time of the channel scaling CWmin with the rate to achieve
fairness. Finally, [22] proposes a scheme for airtime fairness that runs several
virtual DCF instances per node, scaling the number of instances with the rate
and channel properties.

Achieving fairness by varying the transmission size is addressed in [10,
23, 24]. The former two predate the aggregation features of 802.11n and
so [23] proposes to scale the packet size downwards by varying the MTU
with the transmission rate. [24] goes the other way and proposes a scheme
where a station will burst packets to match the total transmission length of the
previous station that was heard on the network. Finally, [10] uses the two-level
aggregation feature of 802.11n and proposes a scheme to dynamically select the
optimal aggregation size so all transmissions take up the same amount of time.

Turning to schedulers, [25] and [16] both propose schedulers which work
at the access point to achieve airtime fairness, the former estimating the packet
transmission time from channel characteristics, and the latter measuring it
after transmission has occurred. [26] proposes a solution for wireless mesh
networks, which leverages routing metrics to schedule links in a way that
ensures fairness. Finally, [27] proposes a scheme to scale the queue space at
the access point based on the BDP of the flows going through the access point.
Our solution is closest to [16], but we improve upon it by increasing accuracy

140 Paper V

and reducing implementation difficulty, while adding an important latency-
reducing optimisation for sparse stations, as was described in Section 3.2.

A few proposals fall outside the categories above. [28] proposes a TCP con-
gestion control algorithm that uses information about the wireless conditions
to cap the TCP window size of clients to achieve fairness. Finally, there are
schemes that sidestep the fairness problems of the 802.11 MAC and instead
replace it entirely with TDMA scheduling. [29] proposes a scheme for TDMA
scheduling in a mesh network that ensures fair bandwidth allocation to all
connecting clients, and [30] implements a TDMA transmission scheme for
infrastructure WiFi networks.

6 Conclusion
We have developed a novel two-part solution to two large performance prob-
lems affecting WiFi – bufferbloat and the 802.11 performance anomaly. The
solution consists of a new integrated queueing scheme tailored specifically
to eliminate bufferbloat in WiFi, which reduces latency under load by an
order of magnitude. Leveraging the queueing structure, we have developed a
deficit-based airtime fairness scheduler that works at the access point with no
client modifications, and achieves close to perfect fairness in all the evaluated
scenarios, increasing total throughput by up to a factor of 5.

Our solution reduces implementation complexity and increases accuracy
compared to previous work, and has been accepted into the mainline Linux
kernel, making it deployable on billions of Linux-based devices.

7 Acknowledgements
We would like to thank Sven Eckelmann and Simon Wunderlich for their
work on independently verifying our implementation. Their work was funded
by Open Mesh Inc, who also supplied their test hardware. We would also like
to thank Felix Fietkau, Tim Shepard, Eric Dumazet, Johannes Berg, and the
numerous other contributors to the Make-Wifi-Fast and LEDE projects for
their insights, review and contributions to many different iterations of the
implementation.

Portions of this work were funded by Google Fiber and by the Comcast
Innovation Fund, and parts of the infrastructure was sponsored by Lupin
Lodge.

References
[1] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the

Bad and the WiFi: Modern AQMs in a residential setting,” Computer
Networks, vol. 89, pp. 90–106, Oct. 2015.

Ending the Anomaly 141

[2] M. Heusse et al., “Performance anomaly of 802.11 b,” in INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 2. IEEE, 2003, pp. 836–843.

[3] G. Tan and J. V. Guttag, “Time-based fairness improves performance in
multi-rate WLANs.” in USENIX Annual Technical Conference, General
Track, 2004, pp. 269–282.

[4] T. Joshi et al., “Airtime fairness for IEEE 802.11 multirate networks,”
IEEE Transactions on Mobile Computing, vol. 7, no. 4, pp. 513–527, Apr
2008.

[5] G. White, “Active queue management algorithms for DOCSIS 3.0: A sim-
ulation study of CoDel, SFQ-CoDel and PIE in DOCSIS 3.0 networks,”
Cable Television Laboratories, Inc., Tech. Rep., 2013.

[6] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block:
Much ado about nothing?” Oslo University, Tech. Rep. 434, 2013.

[7] A. Showail, K. Jamshaid, and B. Shihada, “Buffer sizing in wireless net-
works: challenges, solutions, and opportunities,” IEEE Communications
Magazine, vol. 54, no. 4, pp. 130–137, Apr 2016.

[8] M. Laddomada et al., “On the throughput performance of multirate IEEE
802.11 networks with variable-loaded stations: analysis, modeling, and
a novel proportional fairness criterion,” IEEE Transactions on Wireless
Communications, vol. 9, no. 5, pp. 1594–1607, May 2010.

[9] L. B. Jiang and S. C. Liew, “Proportional fairness in wireless LANs and ad
hoc networks,” in Wireless Communications and Networking Conference,
2005 IEEE, vol. 3. IEEE, 2005, pp. 1551–1556.

[10] M. Kim, E.-C. Park, and C.-H. Choi, “Adaptive two-level frame aggrega-
tion for fairness and efficiency in IEEE 802.11n wireless LANs,” Mobile
Information Systems, 2015.

[11] T. Y. Arif and R. F. Sari, “Throughput Estimates for A-MPDU and Block
ACK Schemes Using HT-PHY Layer,” Journal of Computers, vol. 9, no. 3,
Mar. 2014.

[12] Adam Belay et al., “IX: A protected dataplane operating system for
high throughput and low latency,” in Proceedings of the 11th USENIX
Symposium on Operating System Design and Implementation (OSDI ’14),
10 2014, pp. 49–65.

[13] T. Szigeti, J. Henry, and F. Baker, “Mapping Diffserv to IEEE 802.11,”
RFC 8325 (Proposed Standard), RFC Editor, Feb. 2018.

[14] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

142 Paper V

[15] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-
robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375–385,
Jun. 1996.

[16] R. G. Garroppo et al., “Providing air-time usage fairness in IEEE 802.11
networks with the deficit transmission time (DTT) scheduler,” Wireless
Networks, vol. 13, no. 4, pp. 481–495, Aug 2007.

[17] “The E-model: a computational model for use in transmission planning,”
ITU-T, Tech. Rep. G.107, Jun. 2015.

[18] K. Cai et al., “Wireless Unfairness: Alleviate MAC Congestion First!”
in Proceedings of the Second ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization, ser.
WinTECH ’07. ACM, 2007, pp. 43–50.

[19] P. Lin, W.-I. Chou, and T. Lin, “Achieving airtime fairness of delay-
sensitive applications in multirate IEEE 802.11 wireless LANs,” IEEE
Communications Magazine, vol. 49, no. 9, pp. 169–175, 2011.

[20] L. Sanabria-Russo et al., “Future evolution of CSMA protocols for the
IEEE 802.11 standard,” in 2013 IEEE International Conference on Com-
munications Workshops (ICC). IEEE, 2013, pp. 1274–1279.

[21] M. Heusse et al., “Idle Sense: An Optimal Access Method for High
Throughput and Fairness in Rate Diverse Wireless LANs,” in Proceedings
of the 2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. ACM, 2005, pp. 121–132.

[22] M. A. Yazici and N. Akar, “Running Multiple Instances of the Dis-
tributed Coordination Function for Air-Time Fairness in Multi-Rate
WLANs,” IEEE Transactions on Communications, vol. 61, no. 12, pp.
5067–5076, Dec. 2013.

[23] J. Dunn et al., “A practical cross-layer mechanism for fairness in 802.11
networks,” in First International Conference on Broadband Networks
(BroadNets 2004). IEEE, 2004, pp. 355–364.

[24] T. Razafindralambo et al., “Dynamic packet aggregation to solve perform-
ance anomaly in 802.11 wireless networks,” in Proceedings of the 9th ACM
international symposium on Modeling analysis and simulation of wireless
and mobile systems. ACM, 2006, pp. 247–254.

[25] K. Gomez et al., “On efficient airtime-based fair link scheduling in
IEEE 802.11-based wireless networks,” in 2011 IEEE 22nd International
Symposium on Personal, Indoor and Mobile Radio Communications, Sep.
2011, pp. 930–934.

[26] R. Riggio, D. Miorandi, and I. Chlamtac, “Airtime Deficit Round Robin
(ADRR) packet scheduling algorithm,” in 2008 5th IEEE International
Conference on Mobile Ad Hoc and Sensor Systems, Sep. 2008, pp. 647–652.

Ending the Anomaly 143

[27] D. Kliazovich et al., “Queue Management Mechanism for 802.11 Base
Stations,” IEEE Communications Letters, vol. 15, no. 7, pp. 728–730, Jul.
2011.

[28] K. Kashibuchi, A. Jamalipour, and N. Kato, “Channel Occupancy Time
Based TCP Rate Control for Improving Fairness in IEEE 802.11 DCF,”
IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2974–2985,
Jul. 2010.

[29] N. Ben Salem and J.-P. Hubaux, “A fair scheduling for wireless mesh
networks,” in First IEEE Workshop on Wireless Mesh Networks (WiMesh),
2005.

[30] W. Torfs and C. Blondia, “TDMA on commercial of-the-shelf hardware:
Fact and fiction revealed,” AEU-International Journal of Electronics and
Communications, vol. 69, no. 5, pp. 800–813, 2015.

VIPaper

Airtime Policy Enforcement for WiFi
PoliFi

Under Submission

“Honesty is the best policy.”

Benjamin Franklin

PoliFi
Airtime Policy Enforcement for WiFi

Toke Høiland-Jørgensen, Per Hurtig and Anna Brunstrom
{toke.hoiland-jorgensen, per.hurtig, anna.brunstrom}@kau.se

Abstract

As WiFi grows ever more popular, airtime contention becomes an
increasing problem. One way to alleviate this is through network policy
enforcement. Unfortunately, WiFi lacks protocol support for configur-
ing policies for its usage, and since network-wide coordination cannot
generally be ensured, enforcing policy is challenging.

However, as we have shown in previous work, an access point can
influence the behaviour of connected devices by changing its scheduling of
transmission opportunities, which can be used to achieve airtime fairness.
In this work, we show that this mechanism can be extended to successfully
enforce airtime usage policies in WiFi networks. We implement this as
an extension our previous airtime fairness work, and present PoliFi, the
resulting policy enforcement system.

Our evaluation shows that PoliFi makes it possible to express a range
of useful policies. These include prioritisation of specific devices; bal-
ancing groups of devices for sharing between different logical networks
or network slices; and limiting groups of devices to implement guest
networks or other low-priority services. We also show how these can be
used to improve the performance of a real-world DASH video streaming
application.

1 Introduction
WiFi is increasingly becoming the ubiquitous connectivity technology in
homes as well as in enterprises. The ability for anyone to set up an access point
and connect any device to it is one of the driving factors behind this increase
of popularity. However, increased popularity also means increased contention
for resources as more devices are deployed.

Since no two devices can transmit at the same time on a given frequency,
the sparse resource that determines performance in WiFi networks is the time

147

148 Paper VI

spent transmitting, also known as airtime usage. The 802.11 Media Access
Control (MAC) protocol used in WiFi networks does not, in itself, guarantee
a fair usage of this sparse resource. In fact it is well known that devices
transmitting at lower rates can use more than their fair share of the airtime [1].

One way to improve performance of a network under contention is to
apply different policies to different devices on the network, which works best
if applied directly to the sparse resource instead of a proxy such as byte-level
throughput. However, WiFi is decentralised at the protocol level, and thus
lacks protocol support for enforcing policies on airtime usage. Fortunately, it
turns out that in the common infrastructure deployment scenario, the access
point can exert quite a bit of influence on the transmission behaviour of
clients, or stations, as they are commonly called. In previous work, we have
shown that this makes it possible to achieve airtime fairness between stations
in a WiFi network by making appropriate scheduling decisions at the AP [2].
Given such a mechanism to enforce fairness, a natural question is whether it
can be extended to express different capacity sharing policies. In this work we
answer this question in the affirmative, in the form of a workable solution to
airtime policy enforcement in WiFi, which we have named PoliFi.

The number of possible policies one might want to express is all but
infinite. Therefore, to focus our discussion, we define the following three
representative policy use cases:

1. Prioritising devices. It should be possible to configure one or more
devices to receive a higher share of network resources than other devices
on the network.

2. Balancing device groups. In this use case, the network should be con-
figured to share the available resources between groups of devices in a
given way. For instance, this could be used to implement the “network
slicing” concept often seen in 5G architectures [3].

3. Limiting groups of devices, as a way to implement a lower-priority
service, such as a guest network. Here, a logical group of devices should
be limited to a maximum capacity share.

PoliFi makes it possible for the user to express all of these policies, and
we also solve a number of practical implementation issues to achieve its real-
isation. Our design is a two-part solution including (a) a userspace daemon
that is configurable and implements the higher-level policy decisions, and (b) a
scheduler integrated with the (Linux) operating system WiFi stack.

The rest of this paper presents PoliFi in detail, and is structured as follows:
Section 2 summarises related work. Section 3 describes our design, with a
performance analysis presented in Section 4. Finally, Section 5 concludes.

2 Related work
Network policies are, in general, nothing new. For instance, standardisation of
different traffic classes has occurred in the form of the DiffServ framework [4].

PoliFi 149

In the WiFi world, the 802.11e standard defines different priority levels, which
can be mapped to DiffServ code points [5]. However, this is all related to
applying policies to different types of traffic, whereas PoliFi deals with realising
different capacity sharing policies between devices on the same network at
the airtime usage level. As such, PoliFi is orthogonal so DiffServ, 802.11e and
other traffic class policy mechanisms.

As mentioned above, PoliFi is an extension of our previous work imple-
menting an airtime fairness enforcement mechanism in Linux [2]. Compared
to this previous work, PoliFi adds the policy enforcement component, and
also generalises the mechanism by moving it out of the device drivers and into
the common WiFi subsystem in Linux, thus making it applicable to more
device drivers.

The concept of airtime policy enforcement appears in the concept of
network slicing, which is an important part of the upcoming 5G mobile
network architecture [3]. Network slicing involves splitting up a network into
several virtual parts that are conceptually isolated from one another, which
is a form of policy enforcement. A description of how to achieve network
slicing in WiFi networks is given in [6], which corresponds roughly to our
second use-case. The authors implement a prototype in simulation. Our
mechanism builds on the same basic concept of computing per-device weights
from group weights, but we solve a number of issues that prevent it from being
implemented on real hardware. In addition, [6] only covers the second of our
three policy use-cases.

Another approach to splitting a wireless network into multiple parts is
presented in [7], which describes a scheme where a separate software router
is installed in the access point. This software router queues packets and
enforces capacity sharing. However, the capacity sharing is implemented at
the bandwidth level which, as mentioned above, is not the sparse resource in a
WiFi network.

A description of a scheme for network slicing in a home network is
described in [8]. The authors describe a design that uses Software Defined
Networking (SDN) to split a home network into different parts, but do not
discuss any mechanism for how the sharing is achieved.

Finally, some enterprise APs offer features related to airtime fairness and
policy configuration, e.g., [9]. Unfortunately, no technical description of
how these policies are enforced is generally available, which prevents us from
comparing them to our solution.

3 The PoliFi Design
We have designed PoliFi as a two-part solution, where a user-space daemon
is configured by the user, and in turn configures a scheduling mechanism in
the kernel. In this section, we describe our design in detail. A diagram of the
design is shown in Figure 1. We begin by describing the user space daemon
that configures the policies. Following this, we describe how the weighted
Deficit Round-Robin (DRR) scheduling mechanism is used to achieve the

150 Paper VI

desired policies, and finally we describe how the mechanism is integrated into
the Linux kernel WiFi stack.

3.1 Userspace Policy Daemon
We implement the userspace policy daemon as part of the hostapd access point
management daemon. This is the daemon responsible for configuring wireless
devices in access point mode in Linux. This means it already implements
policies for other aspects of client behaviour (such as authentication), which
makes it a natural place to implement airtime policy as well.

The module we have added to hostapd can be configured in three modes,
corresponding to the three use cases described in the introduction: static mode,
dynamic mode and limit mode. The user can configure each of these modes
per physical WiFi domain, and assign parameters for individual stations (based
on their MAC addresses), or for entire Basic Service Sets (BSSes). The latter
is a natural grouping mechanism, since this corresponds to logical networks
configured on the same device (e.g., a primary and a guest network). However,
extending the design to any other logical grouping mechanism is straight
forward.

In static mode, the daemon will simply assign static weights to stations
when they associate to the access point. Weights can be configured for in-
dividual stations, while a default weight can be set for each BSS, which will
be applied to all stations that do not have an explicit value configured. This
implements the basic use case of assigning higher priorities to specific devices,
but does not guarantee any specific total share.

The dynamic and limit modes work by assigning weights to each BSS,
which are interpreted as their relative shares of the total airtime, regardless
of how many stations they each have associated. Additionally, in limit mode,
one or more BSSes can be marked as limited. BBSes that are marked as limited
are not allowed to exceed their configured share, whereas no limitations are
imposed on unmarked BSSes. Thus, dynamic mode implements the second
use case, while limit mode implements the third.

For both dynamic mode and limit mode, the daemon periodically polls
the kernel to discover which stations are currently active, using the queue
backlog as a measure of activity, as discussed below. After each polling event,
per-station weights are computed based on the number of active stations in
each BSS, and these weights are configured in the kernel. The details of the
weight computation, and how this is used to achieve the desired policy, is
discussed in the next section. Selecting the polling frequency is a tradeoff
between reaction time and system load overhead. The polling interval defaults
to 100ms, which we have found to offer good reaction times (see Section 4.2),
while having a negligible overhead on our test system.

While our implementation is focused on the single access point case, where
the access point enforces a single configured policy, the userspace daemon
could just as well pull its policy configuration from a central cloud-based
management service, while retaining the same policy enforcement mechanism.

PoliFi 151

Kernel

mac80211 subsystem

Weighted DRR
scheduler

WiFi hardware

Device driver

Userspace

Policy
daemon

A
ss

oc
 /

 d
is

as
so

c
no

ti
fi

ca
ti

on
s

St
at

io
n

qu
eu

e
st

at
eSet station w

eights
A

ir
ti

m
e

us
ag

e

Station

Weight

Deficits

Station

Weight

Deficits

Station

Weight

Deficits

User
configuration

Station
state tracker

Figure 1: The high-level design of PoliFi. The kernel maintains data structures for every
station, containing its current airtime deficits and configured weight. The scheduler
uses this to decide which station to transmit to next. The hardware reports airtime
usage on TX completion. The userspace daemon tracks the associated stations and their
queue state, and updates the weights in the kernel based on user policy preferences.

152 Paper VI

3.2 Weighted Airtime DRR
The fairness mechanism that we are starting from (described in detail in [2])
is a Deficit Round-Robin scheduler, which operates by accounting airtime
usage as reported by the WiFi hardware after a transmission has completed,
and scheduling transmissions to ensure that the aggregate usage over time
is the same for all active stations. Using the airtime information provided
after transmission completes means that retransmissions can be accounted
for, which improves accuracy especially for stations with low signal quality.
Furthermore, as we have shown in our previous work, for TCP traffic we
can provide fairness even for transmissions transfers coming from each station.
This is achieved by accounting the airtime of received packets, which causes
the scheduler to throttle the rate of TCP ACKs going back to the station.

3.2.1 Adding Weighted Scheduling

Given this effective airtime fairness scheduler, we can realise arbitrary division
of the available capacity between different stations, by simply assigning them
different scheduling weights. For the DRR scheduling algorithm employed by
our scheduler, this is achieved by using different quantums per station. Thus,
to apply this to airtime policy enforcement, we need to express the desired
policy as a number of different service weights for each of the active devices.

The first use case is trivially expressed in terms of weights: simply assign
the prioritised device a higher weight; for instance, to double its priority,
assign it a weight of 2. The second use case, where capacity should be split
between groups of devices has been covered in the network slicing use case
described in [6]: each group is assigned a weight signifying its share relative
to the other groups; from these group weights, each device in that group is
assigned a weight computed by dividing the group weight with the number of
active devices in that group.

The final use case requires limiting one or more groups of stations to a
fixed share of the available capacity. This can be illustrated with the guest
network use case, where an example policy could be that a guest network is not
allowed to exceed 50% of the available capacity. If this policy is implemented
as a fixed share between groups, however, a single station on the guest network
would be able to get the same capacity as, say, five users of the regular network,
which is not what we want. Thus, a different policy is needed: a group can be
limited, and should have its weight adjusted only if it would get more than the
configured share, not if it gets less. Thus, this becomes a two-step procedure
that first assigns unit weights to all devices (which is the default when no
policy is applied), and calculates whether or not this results in the limited
group using more than its configured share of the airtime. If it does, a policy
is computed in the same way as for the dynamic use case, which results in the
limited group being assigned exactly its configured airtime share.

PoliFi 153

3.2.2 Computing the Weights

Having established that our desired policies can be expressed in terms of
weights, we turn to the practical difficulties of applying this to a real WiFi
system.

First, the approach outlined above assumes that we have knowledge of
which stations are active at any given time. This might look trivial at first
glance, since an access point needs to maintain some amount of state for all
currently associated clients in any case. However, clients can be associated
to an access point without sending or receiving any data, and thus without
consuming any airtime. This means that association state in itself is not
sufficient to ascertain the set of currently active clients. Fortunately, we have
another piece of data: The queue backlog for each device. Monitoring the
backlog gives us a straight-forward indicator for activity without having to
monitor actual packet flows; we can simply consider any device that has had a
non-zero queue backlog within a suitably short time span as active, and use
that number in our calculations.

The second difficulty lies in the fact that we need to transform the total
weights between groups of stations into weights for each individual station.
As shown in [6], this is conceptually just a simple division. However, when
implementing this in an operating system kernel, we are limited to integer
arithmetic, which means that to get accurate weights, we need to ensure that
the division works when confined to the integers. To achieve this, we first
limit our configuration language to be expressed as integer weights between
groups. Then, to ensure that we can divide these weights with the number of
active stations, we multiply them by a suitable constant, chosen as follows:

We are given the set of groups I , where each group i has a configured group
weightWi and Ni active stations. We then define the multiplication constant
C =

∏
i∈I Ni . Multiplying all group weights by this same constant maintains

their relative ratio, and the choice of constant ensures that each group’s weight
can be divided by the number of active stations in that group. This gives us
the following expression for the per-station weight for group i:

W s
i =

WiC
Ni

(1)

The third issue we need to deal with is converting the weights to the per-
station time quantums that are used in the scheduler, and which are expressed
in microseconds. These should be kept at a reasonable absolute size, because
larger weights result in coarser time granularity of the scheduler, making each
scheduler round take longer and impacting latency of all devices in the network.
We convert the calculated weights into final quantums by normalising them so
they fall within a range of 100 − 1000 µs , but preferring smaller values if the
ratio between the smallest and largest weight is more than 10×.

154 Paper VI

3.3 Kernel Airtime Scheduler
We implement the kernel part of PoliFi in the WiFi protocol subsystem of the
Linux kernel (called mac80211). Our implementation builds on our previous
airtime fairness scheduler, described in [2], which implemented a queueing
system in this layer. In this queueing system, packets are assigned a Traffic ID
(TID) before enqueue, and a separate queueing structure is created for each
TID, of which there are 16 per station. These per-TID queues then form the
basis of the scheduling of different stations. The queueing structure itself is
based on the FQ-CoDel queue management scheme [10] and ensures flow
isolation and low queueing latency.

While our previous implementation implemented queueing in the general
WiFi layer, scheduling and tracking of each active station’s airtime usage was
still the responsibility of the driver, and so fairness and policy scheduling
needed to be re-implemented by each driver. In PoliFi, we generalise the
scheduler by moving parts of it into mac80211, where it can be leveraged by
all device drivers, and specify a new API for device drivers to use. We then
modify the ath9k device driver for Qualcomm Atheros 802.11n devices to
use this API. The API moves the responsibility for deciding which TID to
service next into mac80211, where before this decision was the responsibility
of the device driver. The functions implementing and using the API are shown
in Algorithm 5. The device driver runs the schedule() function, and asks
mac80211 for the next TID queue to schedule, using the get_next_tid()
API function. The driver then services this queue until no more packets can be
scheduled (typically because the hardware queue is full, or the TID queue runs
empty). After this, the driver uses the return_tid() API function to return
the TID queue to the scheduler. A third API function, account_airtime(),
allows the driver to register airtime usage for each station, which is typically
done asynchronously as packets are completed or received.

Using this API, mac80211 has enough information to implement airtime
policy enforcement using the weighted deficit scheduler approach described
above. As for the previous airtime fairness scheduler in the driver, airtime
deficits are kept separately for each of the four hardware QoS levels, to match
the split of the hardware transmission queue scheduling. The algorithm is im-
plemented as part of the get_next_tid() function as shown in Algorithm 6.
To allow userspace to adjust the weights of each station, we also add new
functions to the existing userspace API of the Linux WiFi stack (not shown
here due to space constraints).

4 Evaluation
In this section we evaluate how effectively PoliFi is able to implement the
desired policies. We examine steady state behaviour as well as the reaction time
of the dynamic and limit modes with a changing number of active stations.
To show how airtime policies can provide benefits for specific applications,
we also include an DASH video streaming use case in our evaluations. We

PoliFi 155

Algorithm 6 Airtime fairness scheduler. The schedule function is part of the
device driver and is called on packet arrival and on transmission completion.
The account_airtime function is called by the driver when it receives airtime
usage information on TX completion or packet reception.

1: function schedule(qoslvl)
2: tid← get_next_tid(qoslvl)
3: build_aggregate(tid)
4: return_tid(tid)
5: function get_next_tid(qoslvl)
6: tid← find_first(active_tids, qoslvl)
7: stn← tid.station
8: deficit← stn.deficit[qoslvl]
9: if deficit ≤ 0 then

10: stn.deficit[qoslvl]← deficit + stn.weight
11: list_move_tail(tid, active_tids)
12: restart
13: list_remove(tid, active_tids)
14: return tid
15: function return_tid(tid)
16: if tid.queue is not empty then
17: list_add_head(tid, active_tids)
18:
19: function account_airtime(tid, airtime)
20: stn← tid.station
21: qoslvl← tid.qoslvl
22: stn.deficit[qoslvl]← stn.deficit[qoslvl] − airtime

perform the experiments on our testbed with four WiFi devices. The details
of our setup are omitted here due to space constraints, but are available in an
online appendix.22

4.1 Steady state measurements
The steady state tests consist of running a bulk flow (either UDP or TCP) to
each of four stations associated to the access point running PoliFi. Three of
the stations are associated to one BSS on the access point, while the fourth is
on a separate BSS. These two BSSes are the groups the algorithm balances in
dynamic and limit mode. Both groups are given equal weights, meaning that
they should receive the same total airtime share. When testing the limit mode
use case, the BSS with only a single station in it is set to limited, which in this
case means that its natural airtime share is less than the configured share, and
thus that no limiting is necessary to enforce the configured policy. We test this
to ensure that the algorithm correctly allows the group that is not marked as
limited to exceed its configured airtime share.

22See https://www.cs.kau.se/tohojo/polifi.

https://www.cs.kau.se/tohojo/polifi

156 Paper VI

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
40.0

0.1

0.2

0.3

0.4

0.5

A
ir

ti
m

e
sh

ar
e

No policy Static Dynamic Limit

(a) UDP traffic

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
40.0

0.1

0.2

0.3

0.4

0.5

A
ir

ti
m

e
sh

ar
e

No policy Static Dynamic Limit

(b) TCP traffic

Figure 2: Aggregate airtime usage share of four stations, over a 30-second bulk transfer.
Graph columns correspond to the different policy modes. In static mode stations 2 and
3 are assigned weights of 3 and 4, respectively. In dynamic and limit mode, stations 1-3
are on one BSS while station 4 is on another; both BSSes have the same weight, and the
second BSS is set to limited. The plots are box plots of 30 test runs, but look like lines
due to the low variation between runs.

PoliFi 157

BS
S

1

BS
S

2

BS
S

1

BS
S

20.0

0.2

0.4

0.6

0.8

1.0
A

ir
ti

m
e

sh
ar

e

Dynamic Limit

(a) UDP traffic

BS
S

1

BS
S

2

BS
S

1

BS
S

20.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
sh

ar
e

Dynamic Limit

(b) TCP traffic

Figure 3: Aggregate airtime usage of the two BSSes, for the same test as that shown in
Figure 2.

The aggregate airtime usage of the stations and BSSes is seen in figures 2
and 3, respectively. With no policy configured, the scheduler simply enforces
fairness between the active stations. In the static policy mode, relative weights
of 3 and 4 are assigned to stations 2 and 3, respectively. These weights are
clearly reflected in the airtime shares achieved by each station in the second
column of the graphs in Figure 2, showing that static policy assignment works
as designed.

Turning to the group modes, Figure 3 shows the aggregate airtime for each
of the two configured BSSes. In dynamic mode, the scheduler enforces equal
sharing between the two BSSes, which translates to the single station in BSS 2
getting three times as much airtime as the other three, as is seen in the third
column of Figure 2. In limit mode, BSS 2 is limited to at most half of the
airtime, but because there is only one station connected to it, its fair share is
already less than the limit, and so this corresponds to the case where no policy
is enforced. Thus, the tests show that the scheduler successfully enforces the
configured policies for all three use cases.

4.2 Dynamic measurements
To evaluate the reaction time of the scheduler as station activity varies, we
perform another set of UDP tests where we start the flows to each of the
stations five seconds apart. We perform this test for the dynamic and limit
modes, as these are the cases where the scheduler needs to react to changes in
station activity.

158 Paper VI

0 10 20 30 40
Time (s)

0.00

0.25

0.50

0.75

1.00
A

ir
ti

m
e

sh
ar

e

(a) Dynamic mode

0 10 20 30 40
Time (s)

0.00

0.25

0.50

0.75

1.00

A
ir

ti
m

e
sh

ar
e

(b) Limit mode

Figure 4: Airtime usage over time with changing number of active stations, in dynamic
and limit mode. UDP flows to each station start 5 seconds apart. The purple station
(starting first) is on one BSS, while the remaining three stations are on the other BSS.

0 100 200 300 400 500 600
Time (s)

0

2

4

M
bi

ts
/s

Figure 5: DASH video throughput with prioritisation (solid lines) and without (dashed
lines). The straight lines (orange) show the video bitrate picked by the player, while
the others show the actual data stream goodput.

PoliFi 159

The results of this dynamic test is shown in Figure 4 as time series graphs
of airtime share in each 200ms measurement interval. The station that starts
first is Station 4 from the previous graphs, i.e., the station that is on BSS 2.
In dynamic mode, as seen in Figure 4a, the first station is limited to half the
available airtime as soon as the second station starts transmitting. And because
the two groups are set to share the airtime evenly, as more stations are added,
the first station keeps using half the available airtime, while the others share
the remaining half.

In limit mode, as we saw before, the airtime shares of each of the four
stations correspond to their fair share. This is also seen in Figure 4b, where all
stations share the airtime equally as new stations are added.

These dynamic results show that PoliFi has a short reaction time, and can
continuously enforce airtime usage policies as station activity changes. This is
important for deployment in a real network with varying activity levels.

4.3 DASH Traffic Test
To showcase an example real-world use case that can be improved by airtime
policy enforcement, we examine a DASH video streaming application. In this
scenario, we add a station with poor signal quality to the network, representing
a streaming device that is connected to the wireless network at a location where
signal quality is poor. Moving the device is not an option, so other measures are
necessary to improve the video quality. We stream the Big Buck Bunny [11]
video using the dash.js [12] player running in the Chromium browser on
the slow station. We determine that the maximum video bitrate the device
can reliably achieve in this scenario (with no competing traffic) is 2Mbps.
However, when the other devices are active, the video bitrate drops to 1Mbps
because of contention.

Figure 5 shows the achieved video bitrate along with the data goodput of
the video flow, while three other stations are simultaneously receiving bulk
data. With no policy set, the video bitrate drops to 1Mbps, as described above.
However, when we prioritise the station (to half the available airtime in this
case), the achieved bitrate stays at 2Mbps throughout the 10-minute video.
This shows how PoliFi can improve the performance of a specific real-world
application.

5 Conclusion
We have presented PoliFi, a solution for enforcing airtime usage policies in
WiFi networks. Our evaluation shows that PoliFi makes it possible to express
a range of useful policies, including prioritisation of specific devices, and
balancing or limiting of groups of devices. We have also shown how the
policy enforcement can improve the performance of a real-world DASH video
streaming application.

PoliFi can improve performance of WiFi networks with high airtime
contention, and enables novel network usages such as network slicing. For this

160 Paper VI

reason we believe it to be an important addition to modern WiFi networks,
which we are working to make widely available through inclusion in the
upstream Linux WiFi stack.

References
[1] M. Heusse et al., “Performance anomaly of 802.11 b,” in IEEE INFOCOM

2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 2. IEEE, 2003, pp. 836–843.

[2] T. Høiland-Jørgensen et al., “Ending the anomaly: Achieving low latency
and airtime fairness in wifi,” in 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), 2017.

[3] X. Foukas et al., “Network slicing in 5g: Survey and challenges,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 94–100, 2017.

[4] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for DiffServ
Service Classes,” RFC 4594 (Informational), RFC Editor, Aug. 2006.

[5] T. Szigeti, J. Henry, and F. Baker, “Mapping Diffserv to IEEE 802.11,”
RFC 8325 (Proposed Standard), RFC Editor, Feb. 2018.

[6] M. Richart et al., “Resource allocation for network slicing in WiFi ac-
cess points,” in 13th International Conference on Network and Service
Management, CNSM, 2017, 2017.

[7] K. Katsalis et al., “Virtual 802.11 wireless networks with guaranteed
throughout sharing,” in 2015 IEEE Symposium on Computers and Com-
munication (ISCC), Jul 2015.

[8] Y. Yiakoumis et al., “Slicing home networks,” in Proceedings of the
2Nd ACM SIGCOMM Workshop on Home Networks, ser. HomeNets
’11. ACM, 2011.

[9] “Air Time Fairness (ATF) Phase1 and Phase 2 Deployment Guide,”
Cisco systems, 2015. https://www.cisco.com/c/en/us/td/docs/wireless/
technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_
Deployment_Guide.html

[10] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

[11] “Big Buck Bunny,” Blender Foundation, 2018. https://peach.blender.
org/

[12] “dash.js reference DASH player,” Dash Industry Forum, 2018. https:
//github.com/Dash-Industry-Forum/dash.js/wiki

https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://peach.blender.org/
https://peach.blender.org/
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/Dash-Industry-Forum/dash.js/wiki

VIIPaper

Reprinted from

Adapting TCP Small Queues
for IEEE 802.11 Networks

The 29th Annual IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications

(IEEE PIMRC 2018), 9-12 September 2018, Bologna, Italy

“A problem never exists in isolation; it is surrounded
by other problems in space and time.”

Russell L. Ackoff

Adapting TCP Small Queues for IEEE 802.11
Networks

Carlo Augusto Grazia, Natale Patriciello, Toke Høiland-Jørgensen,
Martin Klapez and Maurizio Casoni

Abstract

In recent years, the Linux kernel has adopted an algorithm called TCP
Small Queues (TSQ) for reducing queueing latency by controlling buf-
fering in the networking stack. This solution consists of a back-pressure
mechanism that limits the number of TCP segments within the sender
TCP/IP stack, waiting for packets to actually be transmitted onto the
wire before enqueueing further segments. Unfortunately, TSQ prevents
the frame aggregation mechanism in the IEEE 802.11n/ac standards from
achieving its maximum aggregation, because not enough packets are
available in the queue to build aggregates from, which severely limits
achievable throughput over wireless links. This paper demonstrates this
limitation of TSQ in wireless networks and proposes Controlled TSQ
(CoTSQ), a solution that improves TSQ so that it controls the amount of
data buffered while allowing the IEEE 802.11n/ac aggregation logic to
fully exploit the available channel and achieve high throughput. Results
on a real testbed show that CoTSQ leads to a doubling of throughput
on 802.11n and up to an order of magnitude improvement in 802.11ac
networks, with a negligible latency increase.

1 Introduction
The Linux networking stack has seen many improvements and much research
activity in recent years, with the goals of reducing congestion and latency, and
mitigating the bufferbloat phenomenon [1, 2]. This research has included the
introduction of novel Active Queue Management (AQM) algorithms such as
Codel [3] and PIE [4] as well as novel TCP congestion control algorithms
like BBR [5]. Another essential solution, enabled by default in the Linux
kernel since 2012, is TCP Small Queues (TSQ), a fine-grained backpressure
mechanism that limits each TCP flow to 1 ms of data at the current rate in
the TCP/IP stack; subsequent packets from the same flow are enqueued only

163

164 Paper VII

after the actual NIC transmission. However, not much analysis of TSQ is
available in the scientific literature; in fact, only a few research articles have
at most cited this algorithm [6–8] spending few words, or nothing at all, on
the TSQ mechanism itself. To the best of our knowledge, only Guo et al.
in [9] investigated TSQ by interacting with the algorithm and changing the
threshold for experimental purposes. Unfortunately, this work is tailored
for cellular networks only, as it focuses entirely on latency where the TSQ
threshold is reduced in order to eliminate queueing as much as possible. The
paper concluded that reducing the TSQ threshold has a negligible impact on
the firmware queueing delay. In addition, the TSQ tuning provided in [9]
cannot be applied to the new Linux kernel versions in which the TSQ policy
has been hard-coded in the kernel and cannot be modified by the user. In wired
networks, TSQ largely achieves its goal of latency reduction without affecting
the maximum achievable throughput. However, the same does not hold for
wireless networks, such as IEEE 802.11n/ac WLANs, and this problem has
never been discussed in the literature. The contributions of this paper are the
following: (i) we demonstrate the throughput degradation in IEEE 802.11n/ac
WLANs caused by TSQ; (ii) we propose Controlled TSQ (CoTSQ), a solution
to modify and control the TSQ behaviour through a Linux kernel patch and
(iii) we evaluate our solution on a real testbed providing an extensive set of tests
that show how CoTSQ doubles the achievable throughput in 802.11n networks
and improves it by up to an order of magnitude in 802.11ac networks, in both
cases with a negligible latency increase. The rest of the paper is organised as
follows: Section 2 details the TSQ algorithm, while Section 3 presents our
CoTSQ solution. Section 4 describes the testbed used to produce the results
available in Section 5. Finally, Section 6 concludes the paper.

2 TCP Small Queues in a Nutshell
This section describes the TSQ mechanism, first implemented by Eric Dumazet
and available since Linux kernel versions 3.6 [10]. To understand TSQ, we
refer to Figure 1 that shows the path of TCP packets, from the TCP socket of
the host through the different layers of the Linux networking stack: The TCP
layer, the queueing layer and the device driver.

At the top of Figure 1 is the TCP layer. When an application transmits
data through a TCP socket, it is queued in the socket buffer. The TCP
control system determines when packets are dequeued from the socket buffer
and moved into the lower levels of the network stack. This control system
consists of the Congestion Control algorithm, the TSQ logic and the Pacing
mechanism, which can each limit the flow of packets into lower layers. The
Congestion Control algorithm is the core engine of the protocol, and each
TCP variant (such as Cubic, BBR, Vegas, New Reno, etc.) define different
behaviour for this congestion control module. The module implements the
standard ACK logic of TCP, maintains the congestion window, etc. TSQ
and Pacing have two different goals: the former has the role of limiting the
amount of data of any given socket in the stack, while the latter smoothes

Adapting TCP Small Queues for IEEE 802.11 Networks 165

Driver

Queueing
Layer

TCP Control

TSQ

Pacing

Congestion

 Control

Classi�er

AQM

Packet Scheduler

BQL

NIC

C
o
m

p
le

t
io

n
 S

ig
n

a
l

what to send

how fast to send

how much
to enqueue

when to send

LastACK LastSent

TCP Socket

Figure 1: Linux TCP sender architecture.

166 Paper VII

out transmission of individual packets by spacing them equally according to
the current estimated rate, thus preventing big bursts of packets put onto the
medium at once. The pacing mechanism is optional and can be activated by
the congestion control module or by the sending application, while TSQ and
the selected congestion control is always active.

Inside the queueing layer, packets are managed according to the queueing
discipline deployed. The queueing layer can implement various queueing
mechanisms, ranging from a simple FIFO queue, to elaborate queueing schemes
with per-flow queueing and fairness enforcement. In addition, AQM can be
implemented in this layer, either as a simple mechanism on top of a FIFO
queue, or as part of a more elaborate multi-queue system.

A lot of the scientific work seeking to address bufferbloat has focused on the
queueing layer. The Linux kernel implements the queueing layer as a generic
queueing discipline (qdisc) which is used for all networking interfaces. The
current state of the art qdisc (which is used by default in many deployments
of Linux) is FQ-Codel [11], which is a fairness queueing algorithm that uses
the CoDel AQM to control each queue, and a Deficit Round Robin-based
scheduling of the queues. However, for supported WiFi drivers, the kernel
instead uses an integrated queueing system based on the FQ-CoDel algorithm,
but tailored specifically for WiFi [12].

Once the queueing layer dequeues a packet, the latter moves to the last
block in the figure which is the device driver controlling the Network Interface
Card (NIC). Here there is a buffer that manages the packets waiting to be
sent on the physical link, and the Linux kernel deploys solutions to mitigate
bufferbloat also at this low level of the network stack. This solution is named
Byte Queue Limits (BQL) and puts a cap on the amount of data that can
be enqueued and waits to be delivered by the NIC [13]. The last block also
contains the implementation of the IEEE 802.11n/ac aggregation logic, which
is implemented either in the device driver or in the device firmware itself.
Aggregation combines several packets into a single link-layer frame, reducing
overhead and increasing throughput [14, 15].

As seen above, there are queues in several different layers of the network
stack, and thus several places in which bufferbloat can occur, each requiring
its own solution. TSQ is complementary to the other solutions, and is tar-
geted specifically at applications on the local host that use TCP; by providing
backpressure, these applications can better react to congestion signals for their
traffic, and achieve lower application-level latency. TSQ controls dequeueing
from the socket buffer, and so it limits the enqueued data of any TCP flow
regardless of where the data is queued. When the limit is reached, new data
of a flow can be enqueued only when previously enqueued packets from the
same flow have been dequeued by the NIC, and the packet memory freed.
This works by triggering a completion signal that notifies the TSQ logic when
the driver frees the memory allocated for a data packet.

The amount of queue allowed by the TSQ logic is adjusted dynamically as
a function of the TCP rate; the amount of data that can be enqueued for each
flow corresponds to the amount of data that can be transmitted in 1 ms at the

Adapting TCP Small Queues for IEEE 802.11 Networks 167

current rate of the flow. This policy is fixed in the kernel, and the TSQ logic
can be neither disabled nor tuned.

3 Controlled TSQ
To overcome the inflexible behavior of TSQ, we patched the kernel to expose
the TSQ core parameters and make it possible to disable or tune the TSQ
logic. We name this solution Controlled TSQ (CoTSQ) [16]. The CoTSQ
logic relies on 3 parameters:

• bytes is the TSQ parameter that limits the amount of data, expressed
in bytes, for each TCP flow. It is used to impose an upper bound on the
queue;

• ms limits the amount of data in the stack as a function of the latency. It
gives the dynamic threshold, autotuning the number of bytes to enqueue
as a function of the current rate;

• pkts sets a lower bound on the number of packets queued for each TCP
flow.

B = min
(
bytes,max

(
ms,pkts

))
(1)

These three parameters are combined into the queue limit B enforced by
TSQ as given in Equation (1). The ms and pkts parameters are first converted
to bytes, by multiplying the former by the current flow rate and the latter
by the TCP Maximum Segment Size (MSS). We chose Equation (1) because
it is easy to define bytes as upper bound (maximum amount of data to be
enqueued), pkts as lower bound (minimum amount of packets to be enqueued)
and ms as the core value. The latter gives the actual amount of data to enqueue
as a function of the rate. We can express the standard TSQ behavior by setting
bytes=128KB, ms=1 and pkts=0 in the CoTSQ parameters. Similarly, we
also defined a way to completely disable TSQ by setting bytes=-1 (or any
negative value) for testing purposes.

4 Testbed

S C
AP

Figure 2: Physical testbed layout.

168 Paper VII

Table 1: Testbed setups

setup name chipset protocol
ath9k_htc Atheros AR9271 (1x1 MIMO) 802.11n
ath9k Atheros AR9580 (3x3 MIMO) 802.11n
ath10k Atheros QCA9880v2 (3x3 MIMO) 802.11ac

Table 2: Parameters

parameter value
Kernel version 4.14.14-1

TCP Congestion Control Cubic
TSQ type TSQ, NoTSQ and xTSQ

Queueing discipline FQ_Codel
Tests 1-4 TCP Uploads, RRUL

To evaluate our solution we deployed the physical testbed depicted in
Figure 2. It is composed of three nodes: a wired server S, a wireless client C
and an access point AP that acts as a router.

Nodes characteristics. All the three testbed nodes are running the Arch
Linux distribution, equipped with the latest (at the time of writing) Linux
kernel version 4.14.14-1. The end nodes C and S use CUBIC as their TCP
congestion control algorithm. We tested three different wireless devices, a USB
dongle and two types of PCIe cards. For all the device types, one device is
used to create the Access Point router on the AP node and one other is used to
provide wireless connectivity to C. The three setups are labelled by the WiFi
device driver names as ath9k_htc, ath9k, and ath10k, and are summarised in
Table 1.

The ath9k_htc setup uses USB devices which contain Qualcomm Ath-
eros Communications AR9271 chipsets. The ath9k setup uses PCIe devices
containing Qualcomm Atheros Communications AR9580 chipsets with 3x3
MIMO antennas. These first two setups are used for testing the IEEE 802.11n
protocol. The ath10k setup uses PCIe devices containing Qualcomm Atheros
Communications QCA9880v2 chipsets with 3x3 MIMO antennas. This latter
setup is used for testing the IEEE 802.11ac protocol. These three setups, due
to the different drivers, have different queueing systems. The ath9k_htc driver
uses the standard qdisc-based queueing layer. The qdisc is configured to use
FQ-CoDel as the queueing discipline, which is the default in Arch Linux and
it is also the best option for preventing bufferbloat [17]. The ath9k and ath10k
drivers instead use the integrated WiFi-specific queueing layer mentioned pre-
viously. The experiments on the ath9k and ath10k setups were carried out at
Karlstad University, in a setup similar to the one shown in Figure 2, except
that tests were run between AP and C.

TSQ is the main variable parameter for our tests and can have different
values:

• TSQ: the standard TSQ behavior that is obtained by setting bytes=128KB,
ms=1 and pkts=0;

Adapting TCP Small Queues for IEEE 802.11 Networks 169

(a)

(b)

Figure 3: Goodput vs latency, 1 TCP upload on ath9k_htc TSQ (a, top) and ath9k
NoTSQ (b, bottom).

Figure 4: Frame aggregation over time (ath9k).

170 Paper VII

(a)

(b)

Figure 5: Goodput Vs Latency during a TCP flow upload on ath9k_htc. (a) Exponen-
tially increasing ms values. (b) Linearly increasing ms values.

Adapting TCP Small Queues for IEEE 802.11 Networks 171

• NoTSQ: that completely disable TSQ logic and is obtained by setting
bytes=-1;

• xTSQ: where x is the value, expressed in milliseconds, of the amount of
data to enqueue for each TCP flow. It is obtained by setting bytes=10MB,
ms=x and pkts=1. This expresses the tunable nature of the CoTSQ
patch. We have set up a lower bound of one packet and an upper bound
of 10MB of data, while the amount x rules the CoTSQ behavior by
determining the amount of data to enqueue as a function of the TCP
rate, autotuning the threshold like the original TSQ implementation.
These bounds have been selected simply to make sure only the ms value
controls the queue.

Test configuration. We performed our tests using Flent [18], a flexible
network tester able to configure different kinds of traffic and collect the results.
We performed tests with a variable number of flows: starting from a single flow
in upload, then moving to a more congested network with up to four flows in
upload. Each test consists of one minute of actual TCP flow; a 5-seconds period
of only latency measurement is included before and after each test to better
show the impact of TCP on the queueing delay. We also run a test named Real-
time Response Under Load (RRUL) designed by the bufferbloat community
for analyzing network performance under heavy workloads; it consists in 8
TCP flows, 4 in download and 4 in upload, that compete with ICMP and UDP
traffic. The RRUL test has been included in order to measure the impact on
bidirectional traffic. All the testbed characteristics are summarised in Table 2.

5 Results
In this section, we analyse the results obtained by running the aforementioned
tests on the physical testbed. Only a subset of the results are presented here,
but the full dataset is available together with the patch itself, and the test
scripts, in [16]. Where not explicitly stated otherwise, the results are from the
ath9k_htc setup.

The frame aggregation problem. We first present Figure 3 that encapsu-
lates, in a sense, the motivation of this paper. The Figure shows the goodput
achieved by a single TCP flow in upload (from the client to the server) com-
peting with a ping flow. Figure 3a, shows the default configuration with TSQ
enabled, while Figure 3b shows the result with the TSQ logic completely
disabled (labeled NoTSQ).

This Figure has several interesting features:

• The default configuration with TSQ enabled gives a very low latency
that oscillates between 1 and 4ms. At the same time, the goodput is
firmly bounded at 44Mbit/s;

• The patched configuration with NoTSQ (TSQ disabled) results clearly
in a higher goodput that oscillates between 90 and 95 Mbit/s, which is

172 Paper VII

the channel bandwidth limit with the equipped 802.11n hardware of the
ath9k_htc setup. At the same time, the latency is increased to around
35ms.

The goodput/latency tradeoff between TSQ and NoTSQ is evident from
this test, as well as the TSQ limitation in channel exploitation over an 802.11n
environment. The reason why TSQ does not provide optimal goodput lies in
the achieved frame aggregation, which is shown in Figure 4; the presence of a
limited number of packets queued in the driver limits the size of the aggregates
that can be built, which severely limits the achievable throughput. On the
other hand, disabling TSQ (with the NoTSQ test) lets the system reach the
maximum goodput, better utilising the channel, but inducing a latency that
reaches 35ms, ten times higher than with TSQ enabled. The goodput limit, in
this case, strongly depends on the WLAN cards hardware.

The natural question at this point is: is it possible to fully utilise the
channel, reaching high goodput through frame aggregation while maintaining
a low latency?

The CoTSQ solution. To explore the tradeoff between latency and
throughput, we performed additional experiments while varying the ms para-
meter. Figure 5a shows the results of exponentially increasing the parameter
value, as well as the effect of completely disabled TSQ. The figure shows that
while the latency keeps increasing with the allowed queue space, throughput
only increases up to the 8TSQ configuration. We then proceeded to a fine-
grained evaluation of xTSQ switching to a linear increment of values in the
range between three and eight ms. Figure 5b shows that the optimum tradeoff
is found at 6ms, which we will refer to as CoTSQ for the rest of this paper.
Here, throughput reaches the maximum value while maintaining a latency
only 2ms higher than the standard TSQ.

To examine the impact of CoTSQ in a scenario with more congestion, we
perform an additional evaluation in a scenario where 4 simultaneous TCP
uploads are active. Figure 6 shows the combined goodput of the four flows,
and the latency measured while they were active. The first thing to notice is
that the trend is maintained, CoTSQ and NoTSQ almost double the goodput
also in a more congested environment with four transmitting flows. The
second important thing to consider is that the latency induced by the CoTSQ
solution is not increased by the presence of more TCP flows, and remains at
6ms.

What happens in the presence of bidirectional traffic is shown by the
RRUL test. In this case, TSQ only impacts the upstream traffic. This is
because the client TSQ logic does not impact sending of ACKs from C, and
because the bottleneck is at the AP, so there is no queue at S, making TSQ
irrelevant. Figure 7 shows the results of the RRUL test run, and includes
the goodput value of both download and upload streams, together with the
induced latency. A very first thing to notice is the difference between the
goodput in the download and upload directions. When standard TSQ is in
place, the download is unfairly favoured; the difference is a factor of 3 with
more than 75 Mbit/s for the download and less than 25 Mbit/s for the upload.

Adapting TCP Small Queues for IEEE 802.11 Networks 173

Figure 6: Goodput vs Latency, 4 TCP flows in upload.

Figure 7: Goodput vs Latency, RRUL test.

Figure 8: Goodput vs Latency, 1 TCP upload: ath9k setup.

174 Paper VII

Figure 9: TCP RTT, 1 TCP upload: ath9k setup.

The reason for such unfairness is that while the upload traffic is limited by
TSQ, the download traffic is not, and so has no problem reaching its maximum
achievable throughput. CoTSQ reduces the difference between upload and
download, while keeping latency close to the value achieved by TSQ. While
NoTSQ achieves perfect fairness between upload and download, this comes at
the cost of almost twice the latency compared to TSQ and CoTSQ.

To show the impact of CoTSQ with a different queueing structure, Figure 8
shows the goodput of a single TCP upload together with the induced latency
on the ath9k configuration. The first difference to notice is that the ath9k
hardware achieves a higher maximum throughput due to its 3x3 MIMO setup.
However, the same relative impact of TSQ remains, with CoTSQ doubling
the achievable throughput relative to TSQ. As before, the latency increases
to 6ms with CoTSQ. The second difference to notice with Figure 6, is that
the mean induced latency on NoTSQ is reduced from almost 25ms in the
ath9k_htc setup, to less than 10ms in the ath9k setup. This is because the
WiFi-specific queueing structure used by the ath9k driver more effectively
isolates the latency measurement (ping) flow from the queue induced by the
TCP flow. To show the benefit of CoTSQ compared to NoTSQ in this setup,
we also show the RTT of the TCP flow itself during the same test, in Figure 9.
From this it is clear that CoTSQ helps the TCP sender to maintain a lower
RTT while still reaching almost optimal goodput; the difference between the
CoTSQ RTT and the NoTSQ RTT is nearly 20ms.

802.11ac. Figure 10a shows the goodput of a single TCP upload together
with the induced latency for the ath10k setup. This clearly shows the increased
maximum bandwidth of 802.11ac compared to 802.11n. The remarkable thing
to notice is that the goodput improvement from TSQ to CoTSQ in this setup
is even larger, showing an order of magnitude improvement. Figure 10b shows
the repeat of the experiment exploring different parameter values for TSQ.
From this, it is clear the optimal value of ms is still 6ms of data to enqueue.
However, increasing the ms beyond this does not lead to a stable maximum

Adapting TCP Small Queues for IEEE 802.11 Networks 175

(a)

(b)

Figure 10: Goodput Vs Latency achieved during 1 TCP upload: ath10k setup. (a)
CoTSQ, NoTSQ and TSQ comparison. (b) Different ms values.

176 Paper VII

goodput. We attribute this to interactions between queueing in the driver and
queueing in the firmware, and plan to investigate this further in the future.

To conclude this section, we have demonstrated with CoTSQ that it is
possible to achieve high TCP goodput over wireless 802.11 networks with a
negligible latency induction. Based on our results, we have submitted a patch
to the Linux kernel which modifies the TSQ parameters for all TCP flows
going out over wireless interfaces. The patch has been accepted for inclusion
and will be part of the upcoming version 4.17 of Linux.

6 Conclusions
We have designed and implemented CoTSQ, a solution that modifies the TSQ
logic of the Linux kernel to allow each flow to enqueue enough data to avoid
breaking the frame aggregation logic of wireless network interface cards. We
have tested our solution in both 802.11n and 802.11ac networks, with different
levels of traffic congestion. The results show that TSQ prevents full channel
utilisation in wireless networks due to the inability to aggregate packets. Our
CoTSQ solution doubles the achieves goodput in 802.11n networks, and
improves it by an order of magnitude in 802.11ac networks, in both cases with
a negligible increase in latency. Future work will investigate the benefit of
CoTSQ with a wider range of different wireless drivers as well as with different
TCP congestion control algorithms.

References
[1] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”

Queue, vol. 9, no. 11, p. 40, 2011.

[2] Y. Gong et al., “Fighting the Bufferbloat,” in 2013 IEEE Conference on
Computer Communications Workshops, April 2013, pp. 411–416.

[3] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Communica-
tions of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[4] R. Pan et al., “PIE: A lightweight control scheme to address the Buf-
ferbloat problem,” in 2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR). IEEE, 2013, pp. 148–155.

[5] N. Cardwell et al., “BBR: Congestion-based Congestion Control,” Com-
munications of the ACM, vol. 60, no. 2, pp. 58–66, 2017.

[6] A. Saeed et al., “Carousel: Scalable traffic shaping at end hosts,” in
SIGCOMM 2017 - Proceedings of the 2017 Conference of the ACM Special
Interest Group on Data Communication, 2017, pp. 404–417.

[7] B. Briscoe et al., “Reducing internet latency: A survey of techniques and
their merits,” IEEE Communications Surveys and Tutorials, vol. 18, no. 3,
pp. 2149–2196, 2016.

Adapting TCP Small Queues for IEEE 802.11 Networks 177

[8] R. Lübben et al., “On characteristic features of the application level delay
distribution of TCP congestion avoidance,” in 2016 IEEE International
Conference on Communications, ICC 2016, 2016.

[9] Y. Guo et al., “Understanding on-device Bufferbloat for cellular upload,”
in Proceedings of the 2016 Internet Measurement Conference, 2016, pp.
303–317.

[10] J. Corbet, “TCP Small Queues,” July 2012. https://lwn.net/Articles/
507065/

[11] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

[12] T. Høiland-Jørgensen et al., “Ending the anomaly: Achieving low latency
and airtime fairness in wifi,” in 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), 2017.

[13] J. Corbet, “Network transmit queue limits,” LWN Article, August 2011.
https://lwn.net/Articles/454390/

[14] J. Saldana, J. Ruiz-Mas, and J. Almodovar, “Frame aggregation in central
controlled 802.11 WLANs: The latency versus throughput tradeoff,”
IEEE Communications Letters, vol. 21, no. 11, pp. 2500–2503, 2017.

[15] Y. Kim et al., “Throughput enhancement of IEEE 802.11 WLAN via
frame aggregation,” in IEEE Vehicular Technology Conference, vol. 60,
no. 4, 2004, pp. 3030–3034.

[16] “CoTSQ: Linux Kernel patch and source scripts,” March 2018. http:
//netlab.ing.unimo.it/sw/cotsq.zip

[17] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the
Bad and the WiFi: Modern AQMs in a residential setting,” Computer
Networks, vol. 89, pp. 90 – 106, 2015.

[18] T. Høiland-Jørgensen et al., “Flent: The FLExible Network Tester,”
ValueTools 2017, 2017.

https://lwn.net/Articles/507065/
https://lwn.net/Articles/507065/
https://lwn.net/Articles/454390/
http://netlab.ing.unimo.it/sw/cotsq.zip
http://netlab.ing.unimo.it/sw/cotsq.zip

VIIIPaper

Reprinted from

Fast Programmable Packet Processing
in the Operating System Kernel

The eXpress Data Path

CoNEXT ’18: International Conference on emerging
Networking EXperiments and Technologies,

December 4–7, 2018, Heraklion, Greece

“I feel a need. . . A need for speed.”

Pete “Maverick” Mitchell, Top Gun

The eXpress Data Path
Fast Programmable Packet Processing in the Operating

System Kernel

Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern and David Miller

toke.hoiland-jorgensen@kau.se, brouer@redhat.com, daniel@cilium.io,
john@cilium.io, tom@herbertland.com, dsahern@gmail.com,

davem@redhat.com

Abstract

Programmable packet processing is increasingly implemented using
kernel bypass techniques, where a userspace application takes complete
control of the networking hardware to avoid expensive context switches
between kernel and userspace. However, as the operating system is
bypassed, so are its application isolation and security mechanisms; and
well-tested configuration, deployment and management tools cease to
function.

To overcome this limitation, we present the design of a novel ap-
proach to programmable packet processing, called the eXpress Data Path
(XDP). In XDP, the operating system kernel itself provides a safe execu-
tion environment for custom packet processing applications, executed
in device driver context. XDP is part of the mainline Linux kernel and
provides a fully integrated solution working in concert with the kernel’s
networking stack. Applications are written in higher level languages such
as C and compiled into custom byte code which the kernel statically
analyses for safety, and translates into native instructions.

We show that XDP achieves single-core packet processing perform-
ance as high as 24 million packets per second, and illustrate the flexibility
of the programming model through three example use cases: layer-3
routing, inline DDoS protection and layer-4 load balancing.

1 Introduction
High-performance packet processing in software requires very tight bounds
on the time spent processing each packet. Network stacks in general purpose

181

182 Paper VIII

operating systems are typically optimised for flexibility, which means they
perform too many operations per packet to be able to keep up with these high
packet rates. This has led to the increased popularity of special-purpose toolkits
for software packet processing, such as the Data Plane Development Kit
(DPDK) [1]. Such toolkits generally bypass the operating system completely,
instead passing control of the network hardware directly to the network
application and dedicating one, or several, CPU cores exclusively to packet
processing.

The kernel bypass approach can significantly improve performance, but
has the drawback that it is more difficult to integrate with the existing system,
and applications have to re-implement functionality otherwise provided by
the operating system network stack, such as routing tables and higher level
protocols. In the worst case, this leads to a scenario where packet processing
applications operate in a completely separate environment, where familiar
tooling and deployment mechanisms supplied by the operating system cannot
be used because of the need for direct hardware access. This results in increased
system complexity and blurs security boundaries otherwise enforced by the
operating system kernel. The latter is in particular problematic as infrastruc-
ture moves towards container-based workloads coupled with orchestration
systems such as Docker or Kubernetes, where the kernel plays a dominant role
in resource abstraction and isolation.

As an alternative to the kernel bypass design, we present a system that adds
programmability directly in the operating system networking stack in a co-
operative way. This makes it possible to perform high-speed packet processing
that integrates seamlessly with existing systems, while selectively leveraging
functionality in the operating system. This framework, called the eXpress
Data Path (XDP), works by defining a limited execution environment in the
form of a virtual machine running eBPF code, an extended version of original
BSD Packet Filter (BPF) [2] byte code format. This environment executes
custom programs directly in kernel context, before the kernel itself touches
the packet data, which enables custom processing (including redirection) at
the earliest possible point after a packet is received from the hardware. The
kernel ensures the safety of the custom programs by statically verifying them
at load time; and programs are dynamically compiled into native machine
instructions to ensure high performance.

XDP has been gradually integrated into the Linux kernel over several
releases, but no complete architectural description of the system as a whole has
been presented before. In this work we present a high-level design description
of XDP and its capabilities, and how it integrates with the rest of the Linux
kernel. Our performance evaluation shows raw packet processing performance
of up to 24 million packets per second per CPU core. While this does not
quite match the highest achievable performance in a DPDK-based application
on the same hardware, we argue that the XDP system makes up for this by
offering several compelling advantages over DPDK and other kernel bypass
solutions. Specifically, XDP:

The eXpress Data Path 183

• Integrates cooperatively with the regular networking stack, retaining
full control of the hardware in the kernel. This retains the kernel
security boundary, and requires no changes to network configuration
and management tools. In addition, any network adapter with a Linux
driver can be supported by XDP; no special hardware features are needed,
and existing drivers only need to be modified to add the XDP execution
hooks.

• Makes it possible to selectively utilise kernel network stack features
such as the routing table and TCP stack, keeping the same configuration
interface while accelerating critical performance paths.

• Guarantees stability of both the eBPF instruction set and the program-
ming interface (API) exposed along with it.

• Does not require expensive packet re-injection from user space into
kernel space when interacting with workloads based on the normal
socket layer.

• Is transparent to applications running on the host, enabling new deploy-
ment scenarios such as inline protection against denial of service attacks
on servers.

• Can be dynamically re-programmed without any service interruption,
which means that features can be added on the fly or removed completely
when they are not needed without interruption of network traffic, and
that processing can react dynamically to conditions in other parts of the
system.

• Does not require dedicating full CPU cores to packet processing, which
means lower traffic levels translate directly into lower CPU usage. This
has important efficiency and power saving implications.

In the rest of this paper we present the design of XDP and our performance
analysis. This is structured as follows: Section 2 first outlines related work. Sec-
tion 3 then presents the design of the XDP system and Section 4 presents our
evaluation of its raw packet processing performance. Section 5 supplements
this with examples of real-world use cases that can be implemented with XDP.
Finally, Section 6 discusses future directions of XDP, and Section 7 concludes.

2 Related work
XDP is certainly not the first system enabling programmable packet pro-
cessing. Rather, this field has gained momentum over the last several years,
and continues to do so. Several frameworks have been presented to enable
this kind of programmability, and they have enabled many novel applications.
Examples of such applications include those performing single functions, such
as switching [3], routing [4], named-based forwarding [5], classification [6],

184 Paper VIII

caching [7] or traffic generation [8]. They also include more general solutions
which are highly customisable and can operate on packets from a variety of
sources [9–14].

To achieve high packet processing performance on Common Off The
Shelf (COTS) hardware, it is necessary to remove any bottlenecks between
the networking interface card (NIC) and the program performing the packet
processing. Since one of the main sources of performance bottlenecks is the
interface between the operating system kernel and the userspace applications
running on top of it (because of the high overhead of a system call and
complexity of the underlying feature-rich and generic stack), low-level packet
processing frameworks have to manage this overhead in one way or another.
The existing frameworks, which have enabled the applications mentioned
above, take several approaches to ensuring high performance; and XDP builds
on techniques from several of them. In the following we give a brief overview
of the similarities and differences between XDP and the most commonly used
existing frameworks.

The DataPlane Development Kit (DPDK) [1] is probably the most widely
used framework for high-speed packet processing. It started out as an Intel-
specific hardware support package, but has since seen a wide uptake under
the stewardship of the Linux Foundation. DPDK is a so-called kernel bypass
framework, which moves the control of the networking hardware out of the
kernel into the networking application, completely removing the overhead
of the kernel-userspace boundary. Other examples of this approach include
the PF_RING ZC module [15] and the hardware-specific Solarflare Open-
Onload [16]. Kernel bypass offers the highest performance of the existing
frameworks [17]; however, as mentioned in the introduction, it has significant
management, maintenance and security drawbacks.

XDP takes an approach that is the opposite of kernel bypass: Instead of
moving control of the networking hardware out of the kernel, the performance-
sensitive packet processing operations are moved into the kernel, and executed
before the operating system networking stack begins its processing. This
retains the advantage of removing the kernel-userspace boundary between
networking hardware and packet processing code, while keeping the kernel in
control of the hardware, thus preserving the management interface and the
security guarantees offered by the operating system. The key innovation that
enables this is the use of a virtual execution environment that verifies that
loaded programs will not harm or crash the kernel.

Prior to the introduction of XDP, implementing packet processing func-
tionality as a kernel module has been a high-cost approach, since mistakes
can crash the whole system, and internal kernel APIs are subject to frequent
change. For this reason, it is not surprising that few systems have taken this
approach. Of those that have, the most prominent examples are the Open
vSwitch [14] virtual switch and the Click [12] and Contrail [18] virtual router
frameworks, which are all highly configurable systems with a wide scope,
allowing them to amortise the cost over a wide variety of uses. XDP signific-
antly lowers the cost for applications of moving processing into the kernel,

The eXpress Data Path 185

by providing a safe execution environment, and by being supported by the
kernel community, thus offering the same API stability guarantee as every
other interface the kernel exposes to userspace. In addition, XDP programs
can completely bypass the networking stack, which offers higher performance
than a traditional kernel module that needs to hook into the existing stack.

While XDP allows packet processing to move into the operating system for
maximum performance, it also allows the programs loaded into the kernel to
selectively redirect packets to a special user-space socket type, which bypasses
the normal networking stack, and can even operate in a zero-copy mode
to further lower the overhead. This operating mode is quite similar to the
approach used by frameworks such as Netmap [19] and PF_RING [20],
which offer high packet processing performance by lowering the overhead of
transporting packet data from the network device to a userspace application,
without bypassing the kernel completely. The Packet I/O engine that is part
of PacketShader [4] is another example of this approach, and it has some
similarities with special-purpose operating systems such as Arrakis [21] and
ClickOS [22].

Finally, programmable hardware devices are another way to achieve high-
performance packet processing. One example is the NetFPGA [23], which
exposes an API that makes it possible to run arbitrary packet processing
tasks on the FPGA-based dedicated hardware. The P4 language [24] seeks to
extend this programmability to a wider variety of packet processing hardware
(including, incidently, an XDP backend [25]). In a sense, XDP can be thought
of as a “software offload”, where performance-sensitive processing is offloaded
to increase performance, while applications otherwise interact with the regular
networking stack. In addition, XDP programs that don’t need to access kernel
helper functions can be offloaded entirely to supported networking hardware
(currently supported with Netronome smart-NICs [26]).

In summary, XDP represents an approach to high-performance packet
processing that, while it builds on previous approaches, offers a new tradeoff
between performance, integration into the system and general flexibility. The
next section explains in more detail how XDP achieves this.

3 The design of XDP
The driving rationale behind the design of XDP has been to allow high-
performance packet processing that can integrate cooperatively with the oper-
ating system kernel, while ensuring the safety and integrity of the rest of the
system. This deep integration with the kernel obviously imposes some design
constraints, and the components of XDP have been gradually introduced
into the Linux kernel over a number of releases, during which the design has
evolved through continuous feedback and testing from the community.

Unfortunately, recounting the process and lessons learned is not possible
in the scope of this paper. Instead, this section describes the complete system,
by explaining how the major components of XDP work, and how they fit
together to create the full system. This is illustrated by Figure 1, which shows

186 Paper VIII

a diagram of how XDP integrates into the Linux kernel, and Figure 2, which
shows the execution flow of a typical XDP program. There are four major
components of the XDP system:

• The XDP driver hook is the main entry point for an XDP program,
and is executed when a packet is received from the hardware.

• The eBPF virtual machine executes the byte code of the XDP program,
and just-in-time-compiles it for increased performance.

• BPF maps are key/value stores that serve as the primary communica-
tion channel to the rest of the system.

• The eBPF verifier statically verifies programs before they are loaded to
make sure they do not crash or corrupt the running kernel.

3.1 The XDP Driver Hook
An XDP program is run by a hook in the network device driver each time a
packet arrives. The infrastructure to execute the program is contained in the
kernel as a library function, which means that the program is executed directly
in the device driver, without context switching to userspace. As shown in
Figure 1, the program is executed at the earliest possible moment after a packet
is received from the hardware, before the kernel allocates its per-packet sk_buff
data structure or performs any parsing of the packet.

Figure 2 shows the various processing steps typically performed by an XDP
program. The program starts its execution with access to a context object.
This object contains pointers to the raw packet data, along with metadata
fields describing which interface and receive queue the packet was received on.

The program typically begins by parsing packet data, and can pass control
to a different XDP program through tail calls, thus splitting processing into
logical sub-units (based on, say, IP header version).

After parsing the packet data, the XDP program can use the context object
to read metadata fields associated with the packet, describing the interface and
receive queue the packet came from. The context object also gives access to
a special memory area, located adjacent in memory to the packet data. The
XDP program can use this memory to attach its own metadata to the packet,
which will be carried with it as it traverses the system.

In addition to the per-packet metadata, an XDP program can define and
access its own persistent data structures (through BPF maps, described in
Section 3.3 below), and it can access kernel facilities through various helper
functions. Maps allow the program to communicate with the rest of the
system, and the helpers allow it to selectively make use of existing kernel
functionality (such as the routing table), without having to go through the
full kernel networking stack. New helper functions are actively added by the
kernel development community in response to requests from the community,

The eXpress Data Path 187

Network hardware

Li
nu

x
ke

rn
el

BP
F

m
ap

s

XDP

Network stack

Device driver

Queueing
and forwarding TC BPF

TCP/UDP

AF_INET

U
se

rs
pa

ce Control plane

A
F_

X
D

P

A
F_

RA
W

V
ir

tu
al

 d
ev

ic
es

Packet data flow Control data flow

Applications

IP layer

Build sk_buff

Userspace-accessible sockets

Network stack processing steps

User applications, VMs, containers

Parts of the XDP system

VMs and containers

Drop

Figure 1: XDP’s integration with the Linux network stack. On packet arrival, before
touching the packet data, the device driver executes an eBPF program in the main
XDP hook. This program can choose to drop packets; to send them back out the same
interface it was received on; to redirect them, either to another interface (including
vNICs of virtual machines) or to userspace through special AF_XDP sockets; or to
allow them to proceed to the regular networking stack, where a separate TC BPF
hook can perform further processing before packets are queued for transmission. The
different eBPF programs can communicate with each other and with userspace through
the use of BPF maps. To simplify the diagram, only the ingress path is shown.

188 Paper VIII

Drop

Pass to stack

Redirect

Xmit out

Return code

Userspace

CPU

Interface

Packet verdict

Parse packet

- D
irect m

em
ory access to packet data

- Tail calls to split processing

Read/w
rite m

etadata

Context object

- RX
 m

etadata (queue no, ...)
- Pointer to packet data
- Space for custom

 m
etadata

Kernel helpers

U
se kernel functions, e.g.:

- Checksum
m

ing
- Routing table lookups

M
aps

- Key/value stores
- H

ash, array, trie, etc.
- D

efined by program

Kernel
netw

orking stack
U

serspace
program

s

O
ther BPF

program
s

in kernel

Com
m

unication w
/rest of system

Rew
rite packet

- W
rite any packet header / payload

- G
row

/shrink packet headroom

Program
 execution phase transitions

Com
m

unication w
ith rest of system

Packet flow

Figure
2:

Execution
flow

ofa
typicalX

D
P

program
.W

hen
a
packetarrives,the

program
startsby

parsing
packetheadersto

extractthe
inform

ation
itw

illreacton.Itthen
readsor

updatesm
etadata

from
one

ofseveralsources.Finally,a
packetcan

be
rew

ritten
and

a
finalverdictfor

the
packetis

determ
ined.T

he
program

can
alternate

betw
een

packetparsing,m
etadata

lookup
and

rew
riting,allofw

hich
are

optional.T
he

finalverdictisgiven
in

the
form

ofa
program

return
code.

The eXpress Data Path 189

thus continuously expanding the functionality that XDP programs can make
use of.

Finally, the program can write any part of the packet data, including
expanding or shrinking the packet buffer to add or remove headers. This
allows it to perform encapsulation or decapsulation, as well as, for instance,
rewrite address fields for forwarding. Various kernel helper functions are
available to assist with things like checksum calculation for a modified packet.

These three steps (reading, metadata processing, and writing packet data)
correspond to the light grey boxes on the left side of Figure 2. Since XDP
programs can contain arbitrary instructions, the different steps can alternate
and repeat in arbitrary ways. However, to achieve high performance, it is
often necessary to structure the execution order as described here.

At the end of processing, the XDP program issues a final verdict for the
packet. This is done by setting one of the four available return codes, shown
on the right-hand side of Figure 2. There are three simple return codes (with
no parameters), which can drop the packet, immediately re-transmit it out the
same network interface, or allow it to be processed by the kernel networking
stack. The fourth return code allows the XDP program to redirect the packet,
offering additional control over its further processing.

Unlike the other three return codes, the redirect packet verdict requires an
additional parameter that specifies the redirection target, which is set through
a helper function before the program exits. The redirect functionality can be
used (1) to transmit the raw packet out a different network interface (including
virtual interfaces connected to virtual machines), (2) to pass it to a different
CPU for further processing, or (3) to pass it directly to a special userspace
socket address family (AF_XDP). These different packet paths are shown as solid
lines in Figure 1. The decoupling of the return code and the target parameter
makes redirection a flexible forwarding mechanism, which can be extended
with additional target types without requiring any special support from either
the XDP programs themselves, or the device drivers implementing the XDP
hooks. In addition, because the redirect parameter is implemented as a map
lookup (where the XDP program provides the lookup key), redirect targets
can be changed dynamically without modifying the program.

3.2 The eBPF Virtual Machine
XDP programs run in the Extended BPF (eBPF) virtual machine. eBPF
is an evolution of the original BSD packet filter (BPF) [2] which has seen
extensive use in various packet filtering applications over the last decades.
BPF uses a register-based virtual machine to describe filtering actions. The
original BPF virtual machine has two 32-bit registers and understands 22
different instructions. eBPF extends the number of registers to eleven, and
increases register widths to 64 bits. The 64-bit registers map one-to-one to
hardware registers on the 64-bit architectures supported by the kernel, enabling
efficient just-in-time (JIT) compilation into native machine code. Support for

190 Paper VIII

compiling (restricted) C code into eBPF is included in the LLVM compiler
infrastructure [27].

eBPF also adds new instructions to the eBPF instruction set. These include
arithmetic and logic instructions for the larger register sizes, as well as a call
instruction for function calls. eBPF adopts the same calling convention as the
C language conventions used on the architectures supported by the kernel.
Along with the register mapping mentioned above, this makes it possible to
map a BPF call instruction to a single native call instruction, enabling function
calls with close to zero additional overhead. This facility is used by eBPF to
support helper functions that eBPF programs can call to interact with the
kernel while processing, as well as for function calls within the same eBPF
program.

While the eBPF instruction set itself can express any general purpose
computation, the verifier (described in Section 3.4 below) places limitations on
the programs loaded into the kernel to ensure that the user-supplied programs
cannot harm the running kernel. With this in place, it is safe to execute
the code directly in the kernel address space, which makes eBPF useful for a
wide variety of tasks in the Linux kernel, not just for XDP. Because all eBPF
programs can share the same set of maps, this makes it possible for programs
to react to arbitrary events in other parts of the kernel. For instance, a separate
eBPF program could monitor CPU load and instruct an XDP program to
drop packets if load increases above a certain threshold.

The eBPF virtual machine supports dynamically loading and re-loading
programs, and the kernel manages the life cycle of all programs. This makes
it possible to extend or limit the amount of processing performed for a given
situation, by adding or completely removing parts of the program that are not
needed, and re-loading it atomically as requirements change. The dynamic
loading of programs also makes it possible to express processing rules directly
in program code, which for some applications can increase performance by
replacing lookups into general purpose data structures with simple conditional
jumps.

3.3 BPF Maps
eBPF programs are executed in response to an event in the kernel (a packet
arrival, in the case of XDP). Each time they are executed they start in the
same initial state, and they do not have access to persistent memory storage
in their program context. Instead, the kernel exposes helper functions giving
programs access to BPF maps.

BPF maps are key/value stores that are defined upon loading an eBPF
program, and can be referred to from within the eBPF code. Maps exist in
both global and per-CPU variants, and can be shared, both between different
eBPF programs running at various places in the kernel, as well as between
eBPF and userspace. The map types include generic hash maps, arrays and
radix trees, as well as specialised types containing pointers to eBPF programs
(used for tail calls), or redirect targets, or even pointers to other maps.

The eXpress Data Path 191

Maps serve several purposes: they are a persistent data store between
invocations of the same eBPF program; a global coordination tool, where eBPF
programs in one part of the kernel can update state that changes the behaviour
in another; and a communication mechanism between userspace programs
and the kernel eBPF programs, similar to the communication between control
plane and data plane in other programmable packet processing systems.

3.4 The eBPF Verifier
Since eBPF code runs directly in the kernel address space, it can directly
access, and potentially corrupt, arbitrary kernel memory. To prevent this
from happening, the kernel enforces a single entry point for loading all eBPF
programs (through the bpf() system call). When loading an eBPF program
it is first analysed by the in-kernel eBPF verifier. The verifier performs a
static analysis of the program byte code to ensure that the program performs
no actions that are unsafe (such as accessing arbitrary memory), and that
the program will terminate. The latter is ensured by disallowing loops and
limiting the maximum program size. The verifier works by first building a
directed acyclic graph (DAG) of the control flow of the program. This DAG is
then verified as follows:

First, the verifier performs a depth-first search on the DAG to ensure
it is in fact acyclic, i.e., that it contains no loops, and also that it contains
no unsupported or unreachable instructions. Then, in a second pass, the
verifier walks all possible paths of the DAG. The purpose of this second
pass is to ensure that the program performs only safe memory accesses, and
that any helper functions are called with the right argument types. This is
ensured by rejecting programs that perform load or call instructions with
invalid arguments. Argument validity is determined by tracking the state of
all registers and stack variables through the execution of the program.

The purpose of this register state tracking mechanism is to ensure that
the program performs no out of bounds memory accesses without knowing
in advance what the valid bounds are. The bounds cannot be known because
programs must process data packets which vary in size; and similarly, the
contents of maps are not known in advance, so it is not known whether a
given lookup will succeed. To deal with this, the verifier checks that the
program being loaded does its own bounds checking before dereferencing
pointers to packet data, and that map lookups are checked for NULL values
before being dereferenced. This approach leaves the program writer in control
of how checks are integrated into the processing logic, and what to do in the
error path.

To track data access, the verifier tracks data types, pointer offsets and
possible value ranges of all registers. At the beginning of the program, R1
contains a pointer to the context metadata object, R10 is a stack pointer, and
all other registers are marked as not initialised. At each execution step, register
states are updated based on the operations performed by the program. When
a new value is stored in a register, that register inherits the state variables from

192 Paper VIII

the source of the value. Arithmetic operations will affect the possible value
ranges of scalar types, and the offsets of pointer types. The widest possible
range is stored in the state variables, e.g., if a one-byte load is performed
into a register, that register’s possible value range is set to 0-255. Branches in
the instruction graph will update the register state according to the logical
operation contained in the branch. For example, given a comparison such as
"R1 > 10", the verifier will set the maximum value of R1 to 10 in one branch,
and the minimum value to 11 in the other.

Using this range information stored in the state variables, it is possible for
the verifier to predict the ranges of memory that each load instruction can
potentially access, and ensure that only safe memory accesses are performed.
For packet data access this is done by looking for comparisons with the special
data_end pointer that is available in the context object; for values retrieved
from a BPF map the data size in the map definition is used; and for values
stored on the stack, accesses are checked against the data ranges that have
previously been written to. Furthermore, restrictions are placed on pointer
arithmetic, and pointers cannot generally be converted to integer values. Any
eBPF program that performs operations that the verifier cannot prove are safe,
are simply rejected at load time. In addition to this, the verifier also uses the
range information to enforce aligned memory accesses.

It should be noted that the purpose of the verifier is to protect the internals
of the kernel from being exposed to malicious or buggy eBPF programs,
not to ensure that the programs perform their designated function in the
most efficient way possible. That is, an XDP program can slow down the
machine by performing excessive processing (up to the maximum program
size), and it can corrupt network packets if written incorrectly. Loading
programs requires administrative (root) privileges for this reason, and it is up
to the eBPF programmer to prevent these types of bugs, and to the system
administrator to decide which programs to load on the system.

3.5 Example XDP program
To showcase the features described above, Listing 1 shows an example of

a simple XDP program. The program will parse packet headers, and reflect
all UDP packets by swapping the source and destination MAC addresses and
sending the packet back out the interface it came in on. While this is obviously
a very simple example, the program does feature most of the components of
an XDP program that is useful in the real world. Specifically:

• A BPF map is defined (lines 1–7) for keeping statistics of the number of
processed packets. The map is keyed on IP protocol number and each
value is simply a packet count (updated in lines 55–57). A userspace
program can poll this map to output statistics while the XDP program
is running.

• Pointers to the start and end of the packet data is read from the context
object (lines 27–28), to be used for direct packet data access.

The eXpress Data Path 193

1 /* map used to count packets; key is IP protocol, value is pkt count */
2 struct bpf_map_def SEC("maps") rxcnt = {
3 .type = BPF_MAP_TYPE_PERCPU_ARRAY,
4 .key_size = sizeof(u32),
5 .value_size = sizeof(long),
6 .max_entries = 256,
7 };
8 /* swaps MAC addresses using direct packet data access */
9 static void swap_src_dst_mac(void *data)

10 {
11 unsigned short *p = data; unsigned short dst[3];
12 dst[0] = p[0]; dst[1] = p[1]; dst[2] = p[2];
13 p[0] = p[3]; p[1] = p[4]; p[2] = p[5];
14 p[3] = dst[0]; p[4] = dst[1]; p[5] = dst[2];
15 }
16 static int parse_ipv4(void *data, u64 nh_off, void *data_end)
17 {
18 struct iphdr *iph = data + nh_off;
19 if (iph + 1 > data_end)
20 return 0;
21 return iph->protocol;
22 }
23
24 SEC("xdp1") /* marks main eBPF program entry point */
25 int xdp_prog1(struct xdp_md *ctx)
26 {
27 void *data_end = (void *)(long)ctx->data_end;
28 void *data = (void *)(long)ctx->data;
29 struct ethhdr *eth = data; int rc = XDP_DROP;
30 long *value; u16 h_proto; u64 nh_off; u32 ipproto;
31
32 nh_off = sizeof(*eth);
33 if (data + nh_off > data_end)
34 return rc;
35 h_proto = eth->h_proto;
36
37 /* check VLAN tag; could be repeated to support double-tagged VLAN */
38 if (h_proto == htons(ETH_P_8021Q) || h_proto == htons(ETH_P_8021AD)) {
39 struct vlan_hdr *vhdr;
40 vhdr = data + nh_off;
41 nh_off += sizeof(struct vlan_hdr);
42 if (data + nh_off > data_end)
43 return rc;
44 h_proto = vhdr->h_vlan_encapsulated_proto;
45 }
46
47 if (h_proto == htons(ETH_P_IP))
48 ipproto = parse_ipv4(data, nh_off, data_end);
49 else if (h_proto == htons(ETH_P_IPV6))
50 ipproto = parse_ipv6(data, nh_off, data_end);
51 else
52 ipproto = 0;
53
54 /* lookup map element for ip protocol, used for packet counter */
55 value = bpf_map_lookup_elem(&rxcnt, &ipproto);
56 if (value)
57 *value += 1;
58
59 /* swap MAC addrs for UDP packets, transmit out this interface */
60 if (ipproto == IPPROTO_UDP) {
61 swap_src_dst_mac(data);
62 rc = XDP_TX;
63 }
64 return rc;
65 }

Listing 1: Example XDP program. The program parses packet headers, swaps source
and destination MAC addresses for all UDP packets, and sends them back out the same
interface. A packet counter is kept per IP protocol number. Adapted from xdp2_kern.c,
which is distributed with the kernel source code.

194 Paper VIII

• Checking against the data_end pointer ensures that no data is read out
of bounds (lines 19, 33 and 42). The verifier ensures correctness even
across pointer copies (as in lines 19–20).

• The program must handle any packet parsing itself, including things
such as VLAN headers (lines 37–45).

• Direct packet data access is used to modify the packet headers (lines
12–14).

• The map lookup helper function exposed by the kernel (called on line
55). This is the only real function call in the program; all other functions
are inlined on compilation, including helpers like htons().

• The final packet verdict is communicated by the program return code
(line 64).

When the program is installed on an interface, it is first compiled into
eBPF byte code, then checked by the verifier. The notable things checked by
the verifier in this case are (a) the absence of loops, and the total size of the
program, (b) that all direct packet data accesses are preceded by appropriate
bounds checking (c) that the sizes of parameters passed to the map lookup
function matches the map definition, and (d) that the return value from the
map lookup is checked against NULL before it is accessed.

3.6 Summary
The XDP system consists of four major components: (1) The XDP device
driver hook which is run directly after a packet is received from the hardware.
(2) The eBPF virtual machine which is responsible for the actual program
execution (and is also used for executing programs in other parts of the kernel).
(3) BPF maps, which allow programs running in various parts of the kernel to
communicate with each other and with userspace. And (4) The eBPF verifier,
which ensures programs do not perform any operations that can harm the
running kernel.

These four components combine to create a powerful environment for
writing custom packet processing applications, that can accelerate packet
processing in essential paths, while integrating with the kernel and making full
use of its existing facilities. The performance achievable by these applications
is the subject of the next section.

4 Performance evaluation
In this section we present our performance evaluation of XDP. As mentioned
in Section 2, there are quite a few existing systems for high-performance packet
processing, and benchmarking all of them is not feasible in the scope of this
paper. Instead, we note that DPDK is the existing solution that achieves
the highest performance [17], and compare against that as a baseline for the

The eXpress Data Path 195

current state of the art in high-speed software packet processing (using the
testpmd example application shipped with the 18.05 release of DPDK). We
focus on the raw packet processing performance, using synthetic benchmarks,
and also compare against the performance of the Linux kernel network stack,
to show the performance improvements offered by XDP in the same system.
In the next section, we supplement these raw performance benchmarks with
some examples of real-world applications implemented on top of XDP, to
demonstrate their feasibility within the programming model.

For all benchmarks, we use a machine equipped with a hexa-core Intel
Xeon E5-1650 v4 CPU running at 3.60GHz, which supports Intel’s Data
Direct I/O (DDIO) technology allowing the networking hardware Direct
Memory Access (DMA) system to place packet data directly in the CPU
cache. The test machine is equipped with two Mellanox ConnectX-5 Ex VPI
dual-port 100Gbps network adapters, which are supported by the mlx5 driver.
We use the TRex packet generator [28] to produce the test traffic. The test
machine runs a pre-release of version 4.18 of the Linux kernel. To help others
reproduce our results, we make available the full details of our setup, along
with links to source code and the raw test data, in an online repository [29].

In our evaluation, we focus on three metrics:

• Packet drop performance. To show the maximum packet processing
performance, we measure the performance of the simplest possible
operation of dropping the incoming packet. This effectively measures
the overhead of the system as a whole, and serves as an upper bound on
the expected performance of a real packet processing application.

• CPU usage. As mentioned in the introduction, one of the benefits of
XDP is that it scales the CPU usage with the packet load, instead of
dedicating CPU cores exclusively to packet processing. We quantify this
by measuring how CPU usage scales with the offered network load.

• Packet forwarding performance. A packet processing system that cannot
forward packets has limited utility. Since forwarding introduces an
additional complexity compared to the simple processing case (e.g.,
interacting with more than one network adapter, rewriting link-layer
headers, etc.), a separate evaluation of forwarding performance is useful.
We include both throughput and latency in the forwarding evaluation.

We have verified that with full-sized (1500 bytes) packets, our system
can process packets at line-speed (100Gbps) on a single core that is half-idle.
This makes it clear that the challenge is processing many packets per second,
as others have also noted [19]. For this reason, we perform all tests using
minimum-sized (64 bytes) packets, and measure the maximum number of
packets per second the system can process. To measure how performance
scales with the number of CPU cores, we repeat the tests with an increasing
number of cores dedicated to packet processing.23 For XDP and the Linux

23The Hyperthreading feature of the CPU is disabled for our experiments, so whenever we
refer to the number of active CPU cores, this means the number of physical cores.

196 Paper VIII

network stack (which do not offer an explicit way to dedicate cores to packet
processing) we achieve this by configuring the hardware Receive Side Scaling
(RSS) feature to steer traffic to the desired number of cores for each test.

As we will see in the results below, our tests push the hardware to its
very limits. As such, tuning the performance of the system as a whole is
important to realise optimal performance. This includes the physical hardware
configuration, configuration of the network adapter features such as Ethernet
flow control and receive queue size, and configuration parameters of the
Linux kernel, where we for instance disable full preemption and the “retpoline”
mitigation for the recent Meltdown and Spectre vulnerabilities. The full details
of these configuration issues are omitted here due to space constraints, but are
available in the online repository.

The following subsections present the evaluation results for each of the
metrics outlined above, followed by a general discussion of the performance of
XDP compared to the other systems. As all our results are highly repeatable,
we show results from a single test run (with no error bars) to make the graphs
more readable.

4.1 Packet Drop Performance

1 2 3 4 5 6
Number of cores

0

20

40

60

80

100

120

M
pp

s

DPDK
XDP
Linux (raw)
Linux (conntrack)

Figure 3: Packet drop performance. DPDK uses one core for control tasks, so only 5
are available for packet processing.

Figure 3 shows the packet drop performance as a function of the number
of cores. The baseline performance of XDP for a single core is 24Mpps, while
for DPDK it is 43.5Mpps. Both scale their performance linearly until they
approach the global performance limit of the PCI bus, which is reached at

The eXpress Data Path 197

115Mpps after enabling PCI descriptor compression support in the hardware
(trading CPU cycles for PCI bus bandwidth).

The figure also shows the performance of the Linux networking stack in
two configurations: one where we use the “raw” table of the iptables firewall
module to drop packets, which ensures the earliest possible drop in the network
stack processing; and another where we use the connection tracking (conntrack)
module, which carries a high overhead, but is enabled by default on many
Linux distributions. These two modes illustrate the performance span of
the Linux networking stack, from 1.8 Mpps of single-core performance with
conntrack, up to 4.8 Mpps in raw mode. It also shows that in the absence
of hardware bottlenecks, Linux performance scales linearly with the number
of cores. And finally, it shows that with its 24 Mpps on a single core, XDP
offers a five-fold improvement over the fastest processing mode of the regular
networking stack.

As part of this Linux raw mode test, we also measured the overhead
of XDP by installing an XDP program that does no operation other than
updating packets counters and passing the packet on to the stack. We measured
a drop in performance to 4.5Mpps on a single core, corresponding to 13.3 ns
of processing overhead. This is not shown on the figure, as the difference is
too small to be legible.

4.2 CPU Usage

0 5 10 15 20 25
Offered load (Mpps)

0

20

40

60

80

100

CP
U

us
ag

e (
%)

DPDK
XDP
Linux

Figure 4: CPU usage in the drop scenario. Each line stops at the method’s max-
imum processing capacity. The DPDK line continues at 100% up to the maximum
performance shown in Figure 3.

198 Paper VIII

We measure the CPU usage of the different tested systems when running
the packet drop application on a single CPU core, by recording the percentage
of CPU busy time using the mpstat system utility. The results of this is
shown in Figure 4. The test varies the offered packet load up to the maximum
that each system can handle on a single core.

Since DPDK by design dedicates a full core to packet processing, and uses
busy polling to process the packets, its CPU usage is always pegged at 100%,
which is the green line at the top of the figure. In contrast, both XDP and
Linux smoothly scale CPU usage with the offered load, with a slightly larger
relative increase in CPU usage at a small offered load level.

The non-linearity of the graph in the bottom-left corner is due to the fixed
overhead of interrupt processing. At lower packet rates, the number of packets
processed during each interrupt is smaller, leading to higher CPU usage per
packet.

4.3 Packet Forwarding Performance
Figure 5 shows packet forwarding performance. The forwarding applications
perform a simple Ethernet address rewrite, where the source and destination
address of the incoming packet are swapped before the packet is forwarded.
This is the minimum rewriting that is needed for packet forwarding to func-
tion, so the results represent an upper bound on forwarding performance.
Since XDP can forward packets out the same NIC as well as out a different
NIC (using two different program return codes), we include both modes in
the graph. The DPDK example program only supports forwarding packets
through a different interface, so we only include this operating mode in the test.
Finally, the Linux networking stack does not support this minimal forward-
ing mode, but requires a full bridging or routing lookup to forward packets;
this lookup is expensive, and since the other applications do not perform it,
the results are not directly comparable. For this reason, we omit the Linux
networking stack from these results, and instead include the Linux routing
performance in our routing use case presented in Section 5.1.

As Figure 5 shows, we again see linear scaling with the number of cores up
to a global performance bottleneck. The absolute performance is somewhat
lower than for the packet drop case, which shows the overhead of packet
forwarding. We also see that the XDP performance improves significantly
when packets are sent out on the same interface that they were received on,
surpassing the DPDK forwarding performance at two cores and above. The
performance difference is primarily due to differences in memory handling:
packet buffers are allocated by the device driver and associated with the receiv-
ing interface. And so, when the packet is forwarded out a different interface,
the memory buffer needs to be returned to the interface that it is associated
with.

Looking at forwarding latency, as seen in Table 1, the relative performance
of XDP and DPDK for different-NIC forwarding are reflected for the high

The eXpress Data Path 199

Table 1: Packet forwarding latency. Measurement machine connected to two ports on
the same NIC, measuring end-to-end latency for 50 seconds with high and low packet
rates (100 pps and 1 Mpps).

Average Maximum < 10µs
100 pps 1 Mpps 100 pps 1 Mpps 100 pps 1 Mpps

XDP 82µs 7µs 272µs 202µs 0% 98.1%
DPDK 2µs 3µs 161µs 189µs 99.5% 99.0%

1 2 3 4 5 6
Number of cores

0

10

20

30

40

50

60

70

80

M
pp

s

DPDK (different NIC)
XDP (same NIC)
XDP (different NIC)

Figure 5: Packet forwarding throughput. Sending and receiving on the same interface
takes up more bandwidth on the same PCI port, which means we hit the PCI bus limit
at 70 Mpps.

packet rate test (with DPDK showing slightly lower variance as well). How-
ever, for low packet rates, the latency of XDP is dominated by the interrupt
processing time, which leads to much higher end-to-end latency than DPDK
achieves with constant polling.

4.4 Discussion
As we have seen in the previous subsections, XDP achieves significantly higher
performance than the regular Linux networking stack. Even so, for most use
cases XDP does not quite match the performance of DPDK. We believe this is
primarily because DPDK has incorporated more performance optimisations
at the lowest level of the code. To illustrate this, consider the packet drop
example: XDP achieves 24Mpps on a single core, which corresponds to 41.6
nanoseconds per packet, while DPDK achieves 43.5Mpps, or 22.9 nanoseconds

200 Paper VIII

per packet. The difference of 18.7 nanoseconds corresponds to 67 clock cycles
on the 3.6GHz processor in our test machine. Thus, it is clear that every micro-
optimisation counts; for example, we measure an overhead of 1.3 nanoseconds
for a single function call on our test system. The mlx5 driver performs 10
function calls when processing a single packet, corresponding to 13 of the 18.7
nanoseconds of performance difference between XDP and DPDK.

Some of this overhead is inevitable on a general-purpose operating system
such as Linux, as device drivers and subsystems are structured in a way that
makes it possible to support a wide variety of systems and configurations.
However, we believe that some optimisations are viable. For instance, we
have performed an experiment that removed DMA-related function calls that
were not needed on our specific hardware from the driver, removing four of
the 10 per-packet function calls. This improved the packet drop performance
to 29Mpps. Extrapolating this, removing all function calls would increase
performance to 37.6Mpps. While this is not possible in practice, it is possible
to remove some of them, and combining this with other performance optim-
isations, we believe it is reasonable to expect the performance gap between
DPDK and XDP to lessen over time. We see similar effects with other drivers,
such as the i40e driver for 40Gbps Intel cards, which achieves full performance
up to the NIC hardware performance limit with both XDP and DPDK.24

Given the above points, we believe it is feasible for XDP to further decrease
the performance delta to DPDK. However, given the benefits of XDP in terms
of flexibility and integration with the rest of the system, XDP is already a
compelling choice for many use cases; we show some examples of this in the
next section.

5 Real-world use cases
To show how the various aspects of XDP can be used to implement useful
real-world applications, this section describes three example use cases. These
use cases have all seen deployment in one form or another, although we use
simplified versions in our evaluation to be able to make the code available. We
also refer the reader to [30] for an independent look at some of the challenges
of implementing real-world network services in XDP.

The purpose of this section is to demonstrate the feasibility of imple-
menting each use case in XDP, so we do not perform exhaustive performance
evaluations against state of the art implementations. Instead, we use the regular
Linux kernel stack as a simple performance baseline and benchmark the XDP
applications against that. The three use cases are a software router, an inline
Denial of Service (DoS) mitigation application and a layer-4 load balancer.

The eXpress Data Path 201

0 1 2 3 4 5
Mpps (single core)

Linux (full table)

Linux (single route)

XDP (full table)

XDP (single route)

Figure 6: Software routing performance. Since the performance scales linearly with
the number of cores, only the results for a single core are shown.

5.1 Software Routing
The Linux kernel contains a full-featured routing table, which includes support
for policy routing, source-specific routing, multi-path load balancing, and
more. For the control plane, routing daemons such as Bird [31] or FRR [32]
implement a variety of routing control plane protocols. Because of this rich
ecosystem supporting routing on Linux, re-implementing the routing stack
in another packet processing framework carries a high cost, and improving
performance of the kernel data plane is desirable.

XDP is a natural fit for this task, especially as it includes a helper function
which performs full routing table lookups directly from XDP. The result of
the lookup is an egress interface and a next-hop MAC address, which makes it
possible for the XDP program to immediately forward the packet if the lookup
succeeds. If no next-hop MAC is known (because neighbour lookup has not
been performed yet), the XDP program can pass the packet to the networking
stack, which will resolve the neighbour, allowing subsequent packets to be
forwarded by XDP.

To show the performance of this use case, we use the XDP routing example
that is included in the Linux kernel source [33] and compare its performance
to routing in the regular Linux network stack. We perform two tests: one
with a single route installed in the routing table, and another where we use a
full dump of the global BGP routing table from routeviews. org . In both
cases, all next-hop addresses are set to the address of the test system connected
to our egress interface. The full table contains 752,138 distinct routes, and for
our tests we generate 4000 random destination IP addresses to make sure we
exercise the full table.25.

The performance of this use case is seen in Figure 6. Using XDP for the
forwarding plane improves performance with a factor of 2.5 for a full table

24While DPDK uses the drivers in the operating system to assume control of the hardware, it
contains its own drivers that are used for the actual packet processing.

25Using fewer than 4000 destination IPs, the part of the routing table that is actually used is
small enough to be kept in the CPU cache, which gives misleading (better) results. Increasing the
number of IPs above 4000 had no additional effects on forwarding performance.

routeviews.org

202 Paper VIII

lookup, and a factor of 3 for the smaller routing table example. This makes it
feasible to run a software router with a full BGP table at line rate on a 10Gbps
link using a single core (using a conservative estimate of an average packet size
of 300 bytes).

5.2 Inline DoS Mitigation

0 5 10 15 20 25
Mpps DOS traffic

0

5

10

15

20

25

30

35

TC
P

Kt
ra

ns
/s

XDP
No XDP

Figure 7: DDoS performance. Number of TCP transactions per second as the level of
attack traffic directed at the server increases.

DoS attacks continue to plague the internet, typically in the form of
distributed attacks (DDoS attacks) from compromised devices. With XDP, it
is possible to deploy packet filtering to mitigate such attacks directly at the
application servers, without needing to change applications. In the case of a
virtual machine deployment, the filter can even be installed in the hypervisor,
and thus protect all virtual machines running on the host.

To show how this could work, we perform a test modelled on the DDoS
mitigation architecture used by Cloudflare, which uses XDP as the filtering
mechanism [34]. Their Gatebot architecture works by sampling traffic at
servers located in distributed Points of Presence (PoPs), collecting it centrally
for analysis, and formulating mitigation rules based on the analysis. The
mitigation rules take the form of a series of simple checks on the packet
payload, which are compiled directly into eBPF code and distributed to the
edge servers in the PoPs. Here the code is executed as an XDP program that
will drop packets matching the rules, while also updating match counters
stored in BPF maps.

The eXpress Data Path 203

To test the performance of such a solution, we use an XDP program
that parses the packet headers and performs a small number of tests26 to
identify attack traffic and drop it, and uses the CPU redirect feature to pass all
other packets to a different CPU core for processing. To simulate a baseline
application load we use the Netperf benchmarking tool [35]. Netperf contains
a TCP-based round-trip benchmark, which opens a TCP connection and sends
a small payload that is echoed back from the server, repeating as soon as
a reply is received. The output is the number of transactions per second,
which represents performance of an interactive use case, such as small remote
procedure calls.

We run our experiment on a single core, to illustrate the situation where
legitimate traffic has to compete for the same hardware resources as attack
traffic. We apply a baseline load of 35.000 TCP transactions per second, then
simulate the DoS attack by offering an increasing load of small UDP packets
matching our packet filter. We measure the TCP transactions performance as
the attack traffic volume increases, reporting the average of four test repetitions
per data point.

The results of this is shown in Figure 7. Without the XDP filter, perform-
ance drops rapidly, being halved at 3Mpps and effectively zero at just below
3.5Mpps of attack traffic. However, with the XDP filter in place, the TCP
transaction performance is stable at around 28.500 transactions per second
until 19.5Mpps of attack traffic, after which it again drops rapidly. This shows
that effective DDoS filtering is feasible to perform in XDP, which comfort-
ably handles 10Gbps of minimum-packet DoS traffic on a single CPU core.
Deploying DDoS mitigation this way leads to increased flexibility, since no
special hardware or application changes are needed.

5.3 Load Balancing
For the load balancer use case, we use the XDP component of the Katran load
balancer [36] released as open source by Facebook. This works by announcing
an IP address for the service, which is routed to the load balancer. The load
balancer hashes the source packet header to select a destination application
server. The packet is then encapsulated and sent to the application server,
which is responsible for decapsulating it, processing the request, and replying
directly to the originator. The XDP program performs the hashing and
encapsulation, and returns the packet out the same interface on which it
was received. It keeps configuration data in BPF maps and implements the
encapsulation entirely in the eBPF program.

To test this use case, we configure the Katran XDP program with a fixed
number of destination hosts27, and run it on our test machine. We compare
it with the IPVS load balancer that is part of the Linux kernel, which can be
configured in the same way. The performance of both is shown in Table 2,

26Our example program performs four packet data reads per packet, to parse the outer packet
headers and drop packets with a pre-defined UDP destination port number.

27We use one virtual IP per CPU core, and 100 destinations per virtual IP.

204 Paper VIII

CPU Cores 1 2 3 4 5 6

XDP (Katran) 5.2 10.1 14.6 19.5 23.4 29.3
Linux (IPVS) 1.2 2.4 3.7 4.8 6.0 7.3

Table 2: Load balancer performance (Mpps).

which shows linear scaling with the number of CPUs, and that XDP offers a
performance gain of 4.3x over IPVS.

6 Future directions of XDP
As we have shown above, XDP offers high performance and can be used to
implement a variety of real-world use cases. However, this does not mean
that XDP is a finished system. On the contrary, as part of the Linux kernel,
XDP undergoes continuous improvement. Some of this development effort
goes into softening the rough edges that are the inevitable result of XDP being
incrementally incorporated into a general purpose operating system kernel.
Other efforts continue to push the boundaries of XDP’s capabilities. In this
section we discuss some of these efforts.

6.1 Limitations on eBPF programs
As mentioned previously, the programs loaded into the eBPF virtual machine
are analysed by the eBPF verifier, which places certain limitations on the
programs to ensure they do not harm the running kernel. These limitations
fall in two categories: (a) Ensuring the program will terminate, which is
implemented by disallowing loops and limiting the maximum size of the
program. And (b) ensuring the safety of memory accesses, which is done by
the register state tracking explained in Section 3.4.

Since the primary function of the verifier is to ensure the safety of the
kernel, a conservative approach is taken, and the verifier will reject any pro-
gram that it cannot prove is safe. This can lead to false negatives, where safe
programs are needlessly rejected; reducing such cases is an ongoing effort. The
error messages reported by the verifier have also been made friendlier, to make
it easier for developers to change their code to fix verification errors when they
do occur. Support for function calls in eBPF has recently been added, support
for bounded loops is planned, and efficiency improvements of the verifier itself
are being worked on, which will allow it to operate on larger programs.

Another limitation of eBPF programs compared to user-space C programs
is the lack of a standard library, including things like memory allocation,
threading, locking, etc. This is partly alleviated by the life cycle and execution
context management of the kernel (i.e., an XDP program is automatically run
for each arriving packet), and partly by the helper functions exposed by the
kernel.

The eXpress Data Path 205

Finally, only one XDP program can be attached to each networking inter-
face. This can be worked around by cooperation between programs, where the
tail call functionality can be used to either dynamically dispatch to different
programs depending on packet content, or to chain several programs together.

6.2 User Experience and Debugging
Since an XDP program runs in the kernel, the debugging tools available to a
regular userspace program are not generally applicable. Instead, the debugging
and introspection features included in the kernel can be applied to XDP (and
other eBPF programs). These tools include tracepoints and kprobes [37] as
well as the performance counters that are part of the perf subsystem [38].
However, developers who are not familiar with the kernel ecosystem may find
this ecosystem of kernel-specific tools a limitation. To ease the transition, a
variety of tools exist, including the BPF Compiler Collection [39], the bpftool
introspection program [40] and the libbpf library of utility functions [41].
These have already seen significant improvements, but more work is needed in
this area.

6.3 Driver Support
Each device driver needs to add support for running XDP programs, by
supporting an API exposed by the core networking stack, and support is
continuously being added to more and more drivers.28 However, since features
are usually implemented in smaller increments, some care is still needed when
selecting hardware to use with XDP, to ensure full support for the features
needed for a particular use case. However, since XDP is integrated into the
kernel device driver model, it imposes no particular capability constraints on
the hardware, which means that full support in all drivers is possible.

As the XDP system has evolved, the need to keep the changes required
in drivers to support XDP to a minimum has become increasingly clear, and
some steps have been taken in this direction. For instance, support for new
targets can be added to the redirection action without any changes needed
from the drivers. Finally, the Generic XDP feature [43] allows running XDP
programs (at reduced performance) even if the networking driver lacks the
proper support, by moving execution into the core networking stack.

6.4 Performance Improvements
As we discussed in Section 4.4, there is still a performance gap between XDP
and DPDK in some use cases. Efforts to improve this are ongoing, which
includes micro-optimisations of driver code as well as changes to the core XDP
code to remove unnecessary operations, and amortise processing costs through
improved batching.

28At the time of writing Linux 4.18 has XDP support in 12 different drivers, including most
high-speed network adapters. For an updated list, see [42].

206 Paper VIII

6.5 QoS and Rate Transitions
Currently, XDP does not implement any mechanism for supporting different
Quality of Service (QoS) levels. Specifically, an XDP program receives no
back-pressure when attempting to forward packets to a destination that has
exhausted its capacity, such as when joining networks with different speeds or
other mismatched network characteristics.

While QoS is lacking from XDP, the Linux kernel networking stack fea-
tures best-in-class Active Queue Management (AQM) and packet scheduling
algorithms [44]. Not all of these features are a good fit for the XDP architec-
ture, but we believe that selectively integrating features from the networking
stack into XDP is an opportunity to provide excellent support for QoS and
AQM in XDP, in a way that can be completely transparent to the packet
processing applications themselves. We are planning to explore this further.

6.6 Accelerating Transport Protocols
With XDP we have shown how high-speed packet processing can be integrated
cooperatively into the operating system to accelerate processing while making
use of existing features of the operating system where it makes sense. XDP
focuses on stateless packet processing, but extending the same model to stateful
transport protocols such as TCP would provide many of the same performance
benefits to applications that require reliable (and thus stateful) transports.
Indeed, others have shown that accelerated transport protocols can significantly
improve performance relative to the regular operating system stack [45–48].

One of these previous solutions [45] shows that there is significant potential
in improving the raw packet processing performance while keeping the in-
kernel TCP stack itself. XDP is a natural fit for this, and there has been some
initial discussion of how this could be achieved [49]; while far from trivial, this
presents an exciting opportunity for expanding the scope of the XDP system.

6.7 Zero-copy to userspace
As mentioned in Section 3.1, an XDP program can redirect data packets to a
special socket opened by a user space application. This can be used to improve
performance of network-heavy applications running on the local machine.
However, in its initial implementation, this mechanism still involves copying
the packet data, which negatively affects performance. There is ongoing work
to enable true zero-copy data transfer to user space applications through AF_-
XDP sockets. This places some constrains on the memory handling of the
network device, and so requires explicit driver support. The first such support
was merged into the kernel in the 4.19 release cycle, and work is ongoing
to add it to more drivers. The initial performance numbers look promising,
showing transfers of upwards of 20 Mpps to userspace on a single core.

The eXpress Data Path 207

6.8 XDP as a building block
Just as DPDK is used as a low-level building block for higher level packet
processing frameworks (e.g., [11]), XDP has the potential to serve as a runtime
environment for higher-level applications. In fact, we have already started
to see examples of applications and frameworks leveraging XDP. Prominent
examples include the Cilium security middle-ware [50], the Suricata network
monitor [51], Open vSwitch [52] and the P4-to-XDP compiler project [25].
There is even an effort to add XDP as a low-level driver for DPDK [53].

7 Conclusion
We have presented XDP, a system for safely integrating fast programmable
packet processing into the operating system kernel. Our evaluation has shown
that XDP achieves raw packet processing performance of up to 24Mpps on a
single CPU core.

While this is not quite on par with state of the art kernel bypass-based
solutions, we argue that XDP offers other compelling features that more
than make up for the performance delta. These features include retaining
kernel security and management compatibility; selectively utilising existing
kernel stack features as needed; providing a stable programming interface; and
complete transparency to applications. In addition, XDP can be dynamically
re-programmed without service interruption, and requires neither specialised
hardware nor dedicating resources exclusively to packet processing.

We believe that these features make XDP a compelling alternative to all-or-
nothing kernel bypass solutions. This belief is supported by XDP’s adoption
in a variety of real-world applications, some of which we have shown examples
of. Furthermore, the XDP system is still evolving, and we have outlined a
number of interesting developments which will continue to improve it in the
future.

Acknowledgements
XDP has been developed by the Linux networking community for a number
of years, and the authors would like to thank everyone who has been involved.
In particular, Alexei Starovoitov has been instrumental in the development
of the eBPF VM and verifier; Jakub Kicinski has been a driving force behind
XDP hardware offloading and the bpftool utility; and Björn Töpel and Magnus
Karlsson have been leading the AF_XDP and userspace zero-copy efforts.

We also wish to extend our thanks to the anonymous reviewers, and to
our shepherd Srinivas Narayana, for their helpful comments.

208 Paper VIII

References
[1] “Data plane development kit,” Linux Foundation, 2018. https://www.

dpdk.org/

[2] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture,” in USENIX winter, vol. 93, 1993.

[3] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”
in Proceedings of the 8th international conference on Emerging networking
experiments and technologies. ACM, 2012.

[4] S. Han et al., “PacketShader: a GPU-accelerated software router,” in ACM
SIGCOMM Computer Communication Review, vol. 40, no. 4. ACM,
2010.

[5] D. Kirchner et al., “Augustus: a CCN router for programmable net-
works,” in Proceedings of the 3rd ACM Conference on Information-Centric
Networking. ACM, 2016.

[6] P. M. Santiago del Rio et al., “Wire-speed statistical classification of
network traffic on commodity hardware,” in Proceedings of the 2012
Internet Measurement Conference. ACM, 2012.

[7] R. B. Mansilha et al., “Hierarchical content stores in high-speed ICN
routers: Emulation and prototype implementation,” in Proceedings of the
2nd ACM Conference on Information-Centric Networking. ACM, 2015.

[8] P. Emmerich et al., “Moongen: A scriptable high-speed packet generator,”
in Proceedings of the 2015 Internet Measurement Conference. ACM, 2015.

[9] S. Han et al., “MegaPipe: A new programming interface for scalable
network I/O,” in Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), 2012.

[10] T. Marian, K. S. Lee, and H. Weatherspoon, “NetSlices: scalable
multi-core packet processing in user-space,” in Proceedings of the eighth
ACM/IEEE symposium on Architectures for networking and communica-
tions systems. ACM, 2012.

[11] L. Linguaglossa et al., “High-speed software data plane via vectorized
packet processing,” Telecom ParisTech, Tech. Rep., 2017.

[12] R. Morris et al., “The Click modular router,” ACM SIGOPS Operating
Systems Review, vol. 33, no. 5, 1999.

[13] M. Dobrescu et al., “RouteBricks: exploiting parallelism to scale software
routers,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009.

https://www.dpdk.org/
https://www.dpdk.org/

The eXpress Data Path 209

[14] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’15), 2015.

[15] “PF_RING ZC (Zero Copy),” Ntop project, 2018. https://www.ntop.
org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/

[16] “OpenOnload,” Solarflare Communications Inc, 2018. https://www.
openonload.org/

[17] S. Gallenmüller et al., “Comparison of frameworks for high-performance
packet IO,” in Proceedings of the Eleventh ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ser. ANCS
’15. IEEE Computer Society, 2015, pp. 29–38.

[18] J. Networks, “Juniper Contrail Virtual Router,” 2018. https://github.
com/Juniper/contrail-vrouter

[19] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012.

[20] L. Deri, “Modern packet capture and analysis: Multi-core, multi-gigabit,
and beyond,” in the 11th IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2009.

[21] S. Peter et al., “Arrakis: The operating system is the control plane,” ACM
Transactions on Computer Systems (TOCS), vol. 33, no. 4, 2016.

[22] J. Martins et al., “ClickOS and the art of network function virtualization,”
in Proceedings of the 11th USENIXConference on Networked Systems Design
and Implementation. USENIX Association, 2014.

[23] J. W. Lockwood et al., “NetFPGA–an open platform for gigabit-rate
network switching and routing,” in IEEE International Conference on
Microelectronic Systems Education. IEEE, 2007.

[24] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, 2014.

[25] “p4c-xdp,” VMWare, 2018. https://github.com/vmware/p4c-xdp

[26] J. Kicinski and N. Viljoen, “eBPF/XDP hardware offload to SmartNICs,”
in NetDev 1.2 - The Technical Conference on Linux Networking, 2016.

[27] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization. IEEE Computer Society, 2004.

[28] “TRex traffic generator,” Cisco, 2018. https://trex-tgn.cisco.com/

https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.openonload.org/
https://www.openonload.org/
https://github.com/Juniper/contrail-vrouter
https://github.com/Juniper/contrail-vrouter
https://github.com/vmware/p4c-xdp
https://trex-tgn.cisco.com/

210 Paper VIII

[29] T. Høiland-Jørgensen et al., “Xdp-paper online appendix,” 2018. https:
//github.com/tohojo/xdp-paper

[30] S. Miano et al., “Creating complex network service with eBPF: Exper-
ience and lessons learned,” in IEEE International Conference on High
Performance Switching and Routing, 2018.

[31] “BIRD internet routing daemon,” CZ.nic, 2018. https://bird.network.
cz/

[32] “FRRouting,” The Linux Foundation, 2018. https://frrouting.org/

[33] D. Ahern, “XDP forwarding example,” 2018. https://elixir.bootlin.com/
linux/v4.18-rc1/source/samples/bpf/xdp_fwd_kern.c

[34] G. Bertin, “Xdp in practice: integrating xdp in our ddos mitigation
pipeline,” in NetDev 2.1 - The Technical Conference on Linux Networking,
2017.

[35] R. Jones, “Netperf,” Open source benchmarking software, 2018. http:
//www.netperf.org/

[36] “Katran source code repository,” Facebook, 2018. https://github.com/
facebookincubator/katran

[37] “Linux tracing technologies,” Linux documentation authors, 2018. https:
//www.kernel.org/doc/html/latest/trace/index.html

[38] “perf: Linux profiling with performance counters,” perf authors, 2018.
https://perf.wiki.kernel.org/index.php/Main_Page

[39] “BCC BPF Compiler Collection,” IO Visor, 2018. https://www.iovisor.
org/technology/bcc

[40] “bpftool manual,” bpftool authors, 2018. https://elixir.bootlin.com/
linux/v4.18-rc1/source/tools/bpf/bpftool/Documentation/bpftool.rst

[41] “libbpf source code,” libbpf authors, 2018. https://elixir.bootlin.com/
linux/v4.18-rc1/source/tools/lib/bpf

[42] “BPF and XDP reference guide,” Cilium Authors, 2018. https://cilium.
readthedocs.io/en/latest/bpf/

[43] D. S. Miller, “Generic XDP,” 2017. https://git.kernel.org/torvalds/c/
b5cdae3291f7

[44] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the
Bad and the WiFi: Modern AQMs in a residential setting,” Computer
Networks, vol. 89, Oct. 2015.

[45] K. Yasukata et al., “StackMap: Low-latency networking with the OS
stack and dedicated NICs,” in 2016 USENIX Annual Technical Conference
(USENIX ATC 16). USENIX Association, 2016, pp. 43–56.

https://github.com/tohojo/xdp-paper
https://github.com/tohojo/xdp-paper
https://bird.network.cz/
https://bird.network.cz/
https://frrouting.org/
https://elixir.bootlin.com/linux/v4.18-rc1/source/samples/bpf/xdp_fwd_kern.c
https://elixir.bootlin.com/linux/v4.18-rc1/source/samples/bpf/xdp_fwd_kern.c
http://www.netperf.org/
http://www.netperf.org/
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://www.kernel.org/doc/html/latest/trace/index.html
https://www.kernel.org/doc/html/latest/trace/index.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.iovisor.org/technology/bcc
https://www.iovisor.org/technology/bcc
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/bpf/bpftool/Documentation/bpftool.rst
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/bpf/bpftool/Documentation/bpftool.rst
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/lib/bpf
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/lib/bpf
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/
https://git.kernel.org/torvalds/c/b5cdae3291f7
https://git.kernel.org/torvalds/c/b5cdae3291f7

The eXpress Data Path 211

[46] I. Marinos, R. N. Watson, and M. Handley, “Network stack specializa-
tion for performance,” in ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4. ACM, 2014, pp. 175–186.

[47] A. Belay et al., “IX: A protected dataplane operating system for high
throughput and low latency,” in Proceedings of the 11th USENIX Sym-
posium on Operating System Design and Implementation (OSDI ’14).
USENIX, 2014.

[48] E. Jeong et al., “mTCP: a highly scalable user-level TCP stack for mul-
ticore systems.” in Proceedings of the 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’14), vol. 14, 2014, pp.
489–502.

[49] T. Herbert, “Initial thoughts on TXDP,” 2016. https://www.spinics.net/
lists/netdev/msg407537.html

[50] “Cilium software,” Cilium, 2018. https://github.com/cilium/cilium

[51] “Suricata - eBPF and XDP,” Suricata, 2018. https://suricata.readthedocs.
io/en/latest/capture-hardware/ebpf-xdp.html

[52] W. Tu, “[ovs-dev] AF_XDP support for OVS,” 2018. https://mail.
openvswitch.org/pipermail/ovs-dev/2018-August/351295.html

[53] Q. Zhang, “[dpdk-dev] PMD driver for AF_XDP,” 2018. http://mails.
dpdk.org/archives/dev/2018-February/091502.html

https://www.spinics.net/lists/netdev/msg407537.html
https://www.spinics.net/lists/netdev/msg407537.html
https://github.com/cilium/cilium
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://mail.openvswitch.org/pipermail/ovs-dev/2018-August/351295.html
https://mail.openvswitch.org/pipermail/ovs-dev/2018-August/351295.html
http://mails.dpdk.org/archives/dev/2018-February/091502.html
http://mails.dpdk.org/archives/dev/2018-February/091502.html

IXPaper

Reprinted from

The FLExible Network Tester
Flent

11th EAI International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS

2017), December 5–7, 2017, Venice, Italy

“I’ve experiments to run, there is research to be done
On the people who are still alive.”

“Still Alive” — End credits of the Portal game

Flent
The FLExible Network Tester

Toke Høiland-Jørgensen, Carlo Augusto Grazia, Per Hurtig and Anna
Brunstrom

toke.hoiland-jorgensen@kau.se, carloaugusto.grazia@unimore.it,
per.hurtig@kau.se, anna.brunstrom@kau.se

Abstract
Running network performance experiments on real systems is essen-

tial for a complete understanding of protocols and systems connected to
the internet. However, the process of running experiments can be tedious
and error-prone. In particular, ensuring reproducibility across different
systems is difficult, and comparing different test runs from an experiment
can be non-trivial.

In this paper, we present a tool, called Flent, designed to make experi-
mental evaluations of networks more reliable and easier to perform. Flent
works by composing well-known benchmarking tools to, e.g., run tests
consisting of several bulk data flows combined with simultaneous latency
measurements. Tests are specified in source code, and several common
tests are included with the tool. In addition, Flent contains features to
automate test runs, collect relevant metadata and interactively plot and
explore datasets.

We showcase Flent’s capabilities by performing a set of experiments
evaluating the new BBR congestion control algorithm, using Flent’s
capabilities to reproduce experiments both in a controlled testbed and
across the public internet. Our evaluation reveals several interesting
features of BBR’s performance.

1 Introduction
Running properly managed experimental evaluations of networks and network
services can be tedious and error-prone, which is part of the reason why new
network technologies are often primarily (or even exclusively) evaluated by
simulation. In this work we present a tool that is designed to aid researchers
in increasing reliability and making it easier to run tests on real network
hardware.

215

216 Paper IX

There are several reasons why it is valuable to run experiments instead
of simulations. The main reason is also the most obvious: simulations are
necessarily idealised, and may be inaccurate; real-world systems simply behave
differently than simulations. Another reason to prefer experiments on real
systems is the sheer pace of development of, especially, open source operating
systems. Linux, in particular, has seen sweeping changes to its network stack
over the last years, in many aspects completely changing its behaviour. These
changes mean that the assumptions underlying new research need to be verified
against actual systems running on the internet.

We present a tool designed to work towards the goal of making testing
more reliable and easier to carry out. This tool, called Flent ("the FLExible
Network Tester"), works by composing well-known benchmarking tools
to (for example) run tests consisting of several bulk data flows combined
with simultaneous latency measurements or measure application traffic while
loading the link with background flows. Tests are specified in source code, and
several common tests are included with the tool. In addition, Flent contains
features to automate test runs, collect metadata and auxiliary data sets, and to
interactively plot data collected from experiments.

To showcase Flent’s capabilities, we perform an experimental evaluation of
the BBR congestion control algorithm [1] for TCP. BBR was released recently,
and has only been subject of a few independent evaluations. As such, we
consider an evaluation of BBR both timely, and appropriate for showing the
capabilities of Flent. We evaluate the performance of BBR in a controlled
testbed with different Active Queue Management (AQM) algorithms on the
bottleneck link, as well as over a link on the public internet. The evaluation
reveals several interesting features of BBR, including its ability to function
without using drops as a sign of congestion.

The rest of the paper is structured as follows: Section 2 elaborates on
the difficulties that we seek to alleviate, and Section 3 describes Flent and
how it addresses them. Section 4 showcases Flent’s capabilities by performing
an experimental evaluation of the BBR congestion control algorithm. Sec-
tion 5 summarises related work and, finally, Section 6 contains the concluding
summary.

2 Experimental challenges
The key difficulties that the Flent testing tool is designed to address, are
reproducibility of experiments, testbed configuration and automation, and
storage and analysis of measurement data. The rest of this section outlines
each of these in turn.

2.1 Reproducing experiments
Reproducing experiments is important for verifiability, for both the researcher,
and for independent reproduction by others. However, actually creating
reproducible experiments is challenging [2].

Flent 217

Part of the reason for this is the complexity of coordinating different test
tools. Since many network benchmarking tools are single-purpose, running
different tools at the same time can be necessary when creating complex test
scenarios. Often, ad-hoc scripting is the tool of choice when combining test
tools, but that can be error-prone and tedious, and usually results in duplication
of effort between different test scenarios and deployments. The more ad-hoc
the test configuration and setup is, the harder it is to ensure reproducibility of
the tests.

2.2 Testbed configuration and test automation
Experiments often involve testbeds comprising several physical devices set
up to emulate the desired network topology and characteristics, and the
configuration of these devices must be managed. This includes correctly
configuring network interfaces, applying the algorithm(s) under test, etc.
Additionally, the configuration must be verifiable after the tests have run,
so that it is possible to certify that a data set corresponds to a particular
configuration.

This process can be error-prone, especially as the number of configuration
parameters that vary between test runs increase. In addition, configuration
can fail, either from human error or from (unchecked) failures in the configur-
ation process, so automation is important in both application and subsequent
collection.

Finally, being able to automatically run a test series, including applying
configuration between runs, significantly reduces the difficulty of experimental
work, and makes it practical to test a larger set of variables in a single setting.

2.3 Storing and analysing measurement data
As the number of experiments grows, storing the measurement data and
relating it to the right tested configuration becomes harder. This is exacerbated
by the previous issue of coordinating several benchmarking tools with possibly
different output formats. A standardised way is needed to manage these
different benchmarking tool outputs, and extracting the meaningful data
points for analysis.

In addition, gathering relevant metadata can be extremely helpful in verify-
ing the test setup and avoiding spurious errors from faulty configurations that
make the test data invalid.

3 How Flent helps
Flent is developed specifically to address the difficulties mentioned in the
previous section, while also being extensible to address other future use cases.
Flent is written in Python and can drive several other well-known network
benchmarking tools, most notably Netperf. This section describes how Flent

218 Paper IX

seeks to address each of the challenges presented in the previous section. A
design diagram for Flent is available in the online documentation.29

3.1 Reproducing experiments
Flent works by running one or more tests, each defined by a configuration
file that specifies which benchmarking tools to run, leveraging well-known
tools such as Netperf and Iperf. Several tools can be run simultaneously, or in
series, and dependencies can be specified between them (e.g., run one tool once
another has finished). Each test defined in Flent has a name and a separate
configuration file. This greatly aids reproducibility, as the named tests are
available along with the source code, and can be referenced reliably across
different systems running Flent. The tests are quite versatile, since larger test
suites can be composed of the available named tests. This also allows Flent
to work well with other tools that manage tests: Anywhere there’s a Python
environment and the required underlying benchmarking tools, Flent can run.

When running a test, the output of each testing tool is parsed, and the
output data is stored in a common JSON-based format. This makes it easy
to create composite tests comprising several different tools, and afterwards
directly compare the data collected by the tools. A common example employed
in many of the tests included with Flent is running one or more instances of
Netperf to produce bulk flows, while simultaneously measuring the end-to-end
latency by means of the regular ping command.

3.2 Configuration and automation
Flent manages configuration of the test environment by including support
for running arbitrary scripts at the start and end of each test in a series. We
have found that in the small to medium-sized testbed environments targeted
by Flent, scripting is the most flexible choice for configuring nodes. To ensure
correctness, these scripts must run before each test invocation, and any failures
must be detected. To this end, the batch feature simply provides a facility to
run arbitrary commands before and after each test, and (optionally) abort
the test if any of the commands fail. Combined with the metadata gathered
by Flent at each test-run, this is an effective configuration management and
verification facility, without the need to include platform-specific configuration
code in Flent itself.

In addition, Flent has built-in batch run capabilities, making it possible to
specify a series of test runs to be run in sequence, while supporting inheritance
and recursive expansion of variables and config sections to facilitate configura-
tion reuse. By means of this facility, extensive test suites can be built from the
named tests.

29Flent (and its online documentation) is available at https://flent.org/.

https://flent.org/

Flent 219

3.3 Storing and analysing measurement data
Flent automatically gathers metadata from the host running the test (and
optionally from remote hosts via SSH), and stores the metadata in the data
file along with the test data. This means that a single data file can capture
a complete test run and be easily transferred to another system for further
analysis. In addition, auxiliary data sets can be captured along with the main
data series, including queueing statistics from the Linux qdisc layer, socket
statistics reported by the operating system during the test, CPU usage, WiFi
rate statistics and more. As with the metadata, these auxiliary data sets can be
captured from both the local machine running the test, and from instrumented
remote devices such as intermediate routers.

Flent also contains an extensive analysis facility, which reads already pro-
duced test files and produces plots of the data. A graphical user interface
makes it easy to flip between plots of different test runs. Tests can define
detailed plots (such as the raw timeseries data of throughput during the test
run), as well as aggregate plot types (CDFs, box plots, etc), and it is possible to
show several test runs side by side, as well as to combine them into aggregate
plots. The interactive plotting feature makes for a powerful analysis tool in
the exploratory phases of experimental work. Additionally, the tool can also
produce final high-quality graphs for publication: The example plots in the
next section are all produced by Flent’s built-in plotting facilities.

Many plot types are supported, allowing exploration to be performed
directly from within Flent. Should this not be sufficient, it is also possible to
export the data to other formats: there’s a CSV export feature in Flent itself,
and the JSON data format is readily parsable by other tools.

4 Showcasing Flent: A look at the BBR conges-
tion control

In this section, we showcase the capabilities of Flent to effectively run ex-
periments, by evaluating the BBR congestion control algorithm [1] for TCP.
This algorithm was proposed recently, and has garnered significant interest
in the research community. BBR is designed to ensure high utilisation at all
bandwidths without inducing unnecessary queueing latency (also known as
bufferbloat). It does this by continuously estimating delivery rate and path
RTT and adjusting its sending bandwidth accordingly. Every eight roundtrips,
BBR will enter a one-RTT probing phase to probe for more bandwidth, fol-
lowed by a drain phase where sending bandwidth is temporarily lowered to
allow buffers to drain. BBR also employs packet pacing, where packets are
sent at a constant rate over the whole RTT, instead of being bursted out in
window-sized bursts as traditional TCP does.

We believe it is relevant to evaluate how BBR performs in the presence of
another technology that has been shown to be effective against bufferbloat:
Active Queue Management (AQM) algorithms installed at the bottleneck link.
Performing such an evaluation is exactly what Flent excels at, since it involves

220 Paper IX

applying well-known testing methodology (bufferbloat tests) to a new scenario
(BBR).

To also showcase how we can perform the same tests in different environ-
ments and compare the results, we repeat out tests over the public internet. In
both evaluations, we compare the performance of BBR with the well-known
CUBIC congestion control. We focus on the application level goodput and
the end-to-end latency under load as our metrics of interest. In the testbed
experiments, we apply the two state of the art AQM algorithms CoDel [3] and
PIE [4], which both work by dropping packets before the queue fills up, to
signal TCP to slow down. We also apply the FQ-CoDel [5] hybrid AQM and
packet scheduling algorithm, which combines CoDel with a flow scheduler to
also provide flow isolation, fairness and low latency for sparse flows.

4.1 Experimental setup
For our testbed evaluation, we re-use the testbed from a previous study of
AQM algorithms [6]. The testbed consists of five nodes, connected as depicted
in Figure 1. All nodes are regular x86 PCs with Intel Core 2 CPUs and
Intel 82571EB network controllers, running Debian Jessie with a backported
Linux kernel version 4.11. We configure the bottleneck to be 10 Mbps and
the baseline RTT between client and server to be 50 ms. This emulates a
connection to a server on the internet over a residential internet connection.

Client Server

Ethernet Rate limited bottleneck

Bottleneck routerBottleneck router

Latency inducer

Figure 1: Testbed setup.

Flent runs at the node labelled ’Client’ and runs tests against the ’Server’
node. We run three different tests included in the Flent source distribution:
A TCP download test and a TCP upload test (each running one TCP flow
in the respective direction combined with a periodic ICMP Ping to measure
latency), and the Realtime Response Under Load (RRUL) test [7], which is
designed by the bufferbloat community as a stress test to show the presence of
bufferbloat. The latter test runs a total of eight simultaneous TCP flows (four
in each direction) while simultaneously measuring latency using both UDP
and ICMP packets.

For the test running over the public internet, we run the same suite of
tests, but between a test machine located at the University of Modena and
Reggio Emilia in Italy and another machine located at Karlstad University in
Sweden. The path characteristics between the two endpoints are unknown
before the experiment is conducted.

Flent 221

We use the batch facility of Flent to repeat all tests 15 times (for the
internet tests) and 30 times (for the testbed tests). We use the interactive
plotting interface to explore individual test runs and point out interesting
features, and the aggregate plotting facilities to combine all the test runs
into meaningful metrics for the tested algorithms. Detailed instructions for
replicating the experiments are available online.30

4.2 Testbed results
In the testbed results, we first examine the behaviour of a single flow with a
FIFO queue, using the TCP upload test.31 We use Flent’s default timeseries
graph of throughput and ping latency over the duration of the test to get an
idea of how the two different congestion control algorithms work. These
graphs are shown in Figure 2. We clearly see how the latency increases to
around a full second when using CUBIC; and when the queue overflows we
see spikes in both latency and goodput as delivery of date to the application
first slows down, then catches up after packets have been retransmitted.

In contrast to this, BBR manages a level throughput and low latency for
most of the time, punctuated by spikes in latency every 10 seconds when the
algorithm probes for more bandwidth. This shows BBR working as intended
and preventing most of the bufferbloat on the bottleneck link from affecting
the application. This comes at only a small cost in bandwidth: BBR achieves
an average of 9.35 Mbps, while CUBIC achieves 9.55 Mbps.

Turning to the AQM algorithms, one feature of BBR’s behaviour is that
since it does not interpret loss as a sign of congestion, it is not being controlled
only by the AQM. This can be seen in the data in two ways: In the drop
behaviour of the AQMs, and in the relative performance of the different AQM
algorithms. The number of packets dropped by the CoDel AQM is seen in
Figure 3. This is captured from the bottleneck router by the auxiliary data
collection facility in Flent. From the figure, it is very clear that CoDel works
as intended for the CUBIC flow: After a small burst of drops during TCP
slow start (seen at top-left of the graph), CoDel tunes itself to a drop rate that
keeps CUBIC oscillating around the bottleneck bandwidth: around one drop
per two seconds in this case.

In contrast to this, for the BBR flow, CoDel keeps increasing the drop rate
in an attempt to get the queue under control, whenever BBR increases the rate
in the probe phase. This is seen in the crosses on the lower part of Figure 3
that look like they are aligned vertically above one another. Actually, these
are not completely vertical, but rather show a sharply increasing drop rate
over a very short time (this is barely visible in the figure, but can be clearly
seen when zooming in on the plot). Between the probe episodes, periods of
quiescence appear, where the AQM does not drop any packets.

30See https://www.cs.kau.se/tohojo/flent/.
31Since the bottleneck is symmetrical, the TCP download test shows identical behaviour in this

scenario.

https://www.cs.kau.se/tohojo/flent/

222 Paper IX

0 25 50 75 100 125 150

20

40

500

1000

0 25 50 75 100 125 150
Time (s)

5

10

15

TC
P

go
od

pu
t (

M
bi

t/
s)

Upload Ping (ms)

50

100

150

En
d-

to
-e

nd
 la

te
nc

y
(m

s)

Figure 2: Single flow and ping, FIFO queue. CUBIC (top) and BBR (bottom).

0 20 40 60 80 100 120 140
0

1

2

3

0 20 40 60 80 100 120 140
Time (s)

0

5

10

15

N
um

be
r

of
 p

ac
ke

t d
ro

ps
 p

er
 0

.2
s

in
te

rv
al

Figure 3: Number of packets dropped by CoDel per measurement interval (0.2
seconds). CUBIC (top) and BBR (bottom).

Flent 223

When looking at the latency distribution, it is clear that BBR is less
influenced by the AQM than CUBIC is. To show this, we turn to one of
the aggregate plots available in Flent. Figure 4 shows a CDF of the latency
measurements across all test repetitions for the CoDel and PIE AQMs for
both CUBIC and BBR. Consistent with earlier evaluations of the AQMs [6],
CoDel achieves lower delay than PIE, since it tends to drop more aggressively.
However, because this difference is more pronounced when using CUBIC (the
leftmost and rightmost lines), it means that the relative performance of BBR
and CUBIC is reversed depending on the AQM: With CoDel, the queueing
delay is lower when using CUBIC that when using BBR, while the reverse
is true for PIE. Another interesting feature is the shape of the tail of latency
measurements: For CUBIC, the AQMs have a few but quite high spikes of
latency at the 99th percentile. For BBR, these do not appear, but a thicker tail,
starting at the 80th percentile, of latency measurements up to 125 ms is clearly
visible.

The FQ-CoDel hybrid AQM/fairness queueing algorithm shows almost no
induced latency for either congestion control, consistent with earlier results.
This is not shown in Figure 4 as it would obscure the lines of the other
algorithms; however, the FQ-CoDel results are included for the RRUL test
considered next.

50 75 100 125 150 175 200
ms

0.0

0.5

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

CoDel CUBIC CoDel BBR PIE BBR PIE CUBIC

Figure 4: Latency distributions with a single flow for the CoDel and PIE AQM
algorithms.

To evaluate a scenario with higher load on the link, the RRUL test is
an excellent tool. An overview of the aggregate behaviour for the different
combinations of AQMs and congestion control algorithms using the RRUL
test is shown in Figure 5.32 This plot is a so-called "ellipsis plot", which
is another of the plot types included in Flent.33 This plot is excellent for
summarising a lot of data in a compact representation. The latency axis is
flipped to make "better" values be up and to the right, to fit the intuition of

32The CUBIC FIFO case is omitted as that shows latency so high that it would squeeze the rest
of the figure to the point of making it illegible.

33The use of this type of graph has not been invented for Flent; it was pioneered for visualising
bandwidth/latency tradeoffs by Winstein in [8].

224 Paper IX

laymen. The dots for each data series is the median values, while the ellipses
are 1-σ ellipses of the values on the two axes (so larger ellipses indicate higher
variance and the angle of the ellipsis shows the direction of covariance between
the variables).

From the figure, the same trends are visible as before: The behaviour of
BBR does not change significantly depending on the AQM. As the RRUL test
has a larger number of active flows, the latency induced by BBR is higher; and
so CUBIC induces less latency than BBR with both PIE and CoDel, but BBR
achieves slightly higher throughput. Finally, the superior performance of the
FQ-CoDel AQM is clearly visible.

010203040506070
Induced latency (ms)

8.8

9.0

9.2

9.4

TC
P

go
od

pu
t (

M
bi

t/
s)

pie-bbr

pie-cubiccodel-bbr
codel-cubic

fq_codel-bbr

fq_codel-cubic

fifo-bbr

Figure 5: Ellipsis plot of throughput and latency for the RRUL test.

In summary, our testbed evaluation clearly shows several interesting fea-
tures of BBR: It achieves a significantly lower latency than CUBIC on a FIFO
queue, although the intermittent probing behaviour gives significant latency
spikes. In addition, the induced latency is higher when many flows are active,
and AQM algorithms do not impact the performance as much as they do for
CUBIC. However, the AQMs will sharply increase their drop rates in response
to BBRs probing behaviour. While this does not impact the behaviour of
BBR itself in this test, it has the potential to impact other flows sharing the
bottleneck negatively.

4.3 Public internet results
To test how BBR performs outside a controlled environment, we set out to
repeat out experiments "in the wild". Because the tests we performed are
built-in to Flent, repeating the tests was simply a matter of installing the
tool, transferring the configuration file for batch run to another machine, and
making a few adjustments (such as the target host for the tests). We performed
these repeated tests over the public internet between our two universities. The
path characteristics were not known in advance, but the test data allows us to
infer several things of interest, as we will see below.

The initial one-flow test is shown in Figure 6. BBR shows consistent
performance around 110Mbps of throughput, while CUBIC has an initial

Flent 225

0 20 40 60 80 100 120 140

25

50

75

100

125

65

70

75

80

85

0 20 40 60 80 100 120 140
Time (s)

25

50

75

100

125

Upload Ping (ms)

60

65

70

75

TC
P

go
od

pu
t (

M
bi

t/
s)

En
d-

to
-e

nd
 la

te
nc

y
(m

s)

Figure 6: Initial test run over the internet. CUBIC (top) and BBR (bottom).

spike at around the same speed, but quickly becomes erratic and achieves low
overall throughput (20 Mbps mean throughput for CUBIC over the whole
test, 110 Mbps for BBR).

Since the CUBIC throughput decreases over a series of events, we hypothes-
ise that the bottleneck router is shallowly buffered, and other users sharing the
bottleneck causes our flow to experience a lot of packet drops. To confirm that
the drops in throughput correspond to window reduction events, we examine
the TCP congestion window data (as reported by the operating system and
captured as an auxiliary data series by Flent).

This is shown in Figure 7 for both the flow depicted above, and for another
flow from a separate test we conducted at night (where the network load
is likely to be lower, which should lead to fewer overflow-induced drops).
From this figure, we clearly see the characteristic CUBIC window increase and
decrease. We also see significantly better performance for the experiment con-
ducted at night (dashed line); the average throughput for this run is 115 Mbps,
on par with what BBR achieves. However, we still see several consecutive loss
events, which strengthens our shallow buffer hypothesis.

Next, we turn to the RRUL test. Figure 8 shows the aggregate results of
the whole test series for both BBR and CUBIC, and showcases the box plot
type also featured in Flent. We also added a third contender: CUBIC with
packet pacing (labelled "P. CUBIC" in the graph), to see how much of BBR’s
performance comes from pacing.

226 Paper IX

0 20 40 60 80 100 120 140
Time (s)

500

1000

1500

CW
N

D
 s

iz
e

(p
ac

ke
ts

)

Day Night

Figure 7: TCP CUBIC congestion window size, daytime and nighttime tests.

BB
R

CU
BI

C

P.
 C

UB
IC

BB
R

CU
BI

C

P.
 C

UB
IC

BB
R

CU
BI

C

P.
 C

UB
IC

200

400

M
ea

n
TC

P
go

od
pu

t (
M

bi
t/

s) Download Upload Induced latency (ms)

1

2

3

M
ea

n
in

du
ce

d
la

te
nc

y
(m

s)

Figure 8: Aggregate values for all RRUL tests over the internet. "P. CUBIC" is CUBIC
with packet pacing enabled.

From the figure, we see that having more than one active flow significantly
increases the total bandwidth available. We also see that pacing does indeed
help CUBIC achieve better throughput in one direction, while it is less con-
clusive in the other. In either case, BBR consistently performs significantly
better, keeping aggregate throughput steady for all tests, at a slight cost in
latency.

In summary, we have repeated our tests from the testbed over the public
internet, and confirmed several features of BBR. In particular, not treating
every drop as a sign of congestion allows BBR to achieve better performance in
the face of what appears to be a congested bottleneck link with shallow buffers,
although possibly to the detriment of competing flows. We have also shown
how to use the data gathered by Flent to infer properties of the bottleneck
link, such as the congestion levels at different times of day.

Flent 227

5 Related work
The difficulties of properly constructing and performing experiments, and of
reporting accurately on the results of them are not limited to experiments
conducted on real hardware. For instance, Kurkowski et al [2] found that
many simulation studies in the MANET research community suffered from a
series of common errors, many of which are related to those discussed here
(e.g., lack of reproducibility and ambiguous initial configuration).

Turning to test tools, the TEACUP system [9] is a test automation frame-
work created specifically to test TCP implementations. It differs from Flent in
that its focus is on managing an entire testbed infrastructure. This means that
it has more features for configuration, but also makes more assumptions on
topology and the nature of the testbed than Flent does. Additionally, while
TEACUP offers graphing and analysis of test results, these are more limited,
and there is no interactive GUI to explore the data. Netesto [10] is closer in
function to Flent, but also focuses on orchestration of several nodes when
running a test, and supports fewer types of traffic.

D-ITG [11] is a traffic generation and test platform with an extensive list
of supported traffic profiles. It is geared towards running in a managed testbed
and emphasis is on remote management with a separate control network to
transfer logging data. As such, unlike Flent, D-ITG does not include facilities
to interoperate with other tools and does not offer integrated analysis and
plotting tools. Flent can use D-ITG as a benchmarking tool in test definitions.

TEMPEST [12] is a simulation framework that makes it possible to run
packet scheduling code from operating system kernels in a simulated environ-
ment and evaluate various performance metrics with an accessible graphical
user interface. As such, it shares the goal of Flent of making it easier to
evaluate real networking code, but takes the approach of porting the code to a
simulation environment instead of running experiments in a live environment.

Dummynet [13] and netem [14] are emulation modules that can be used
in a real network topology to emulate network features not available in the
physical hardware. Flent can be used to run experiments in topologies that
include emulated dummynet or netem links. Indeed, we use netem for the
purpose of adding latency to the bottleneck link in our own testbed.

Finally, several platforms are available for researchers to run their experi-
ments in extensive testbeds, either isolated or across the public internet [15–18].
Flent can be used to drive experiments on these platforms, further increasing
the ease of running experiments.

6 Conclusions and Future Work
We have presented Flent, a tool to facilitate experimental evaluations of net-
works, specifically designed to deal with commonly encountered issues with
running experiments. These issues include creating reproducible tests, storing
and analysing data, and test automation and configuration management. Flent
tackles each of these issues, and is flexible enough to be widely applicable.

228 Paper IX

We have showcased Flent through an analysis of the BBR congestion
control algorithm, both in a controlled testbed with various active queue
management algorithms installed, and in an uncontrolled setting over the
public internet. This analysis has shown how BBR functions without reacting
to drops as a sign of congestion, and revealed several interesting consequences
of this behaviour.

Development of Flent is ongoing, and future plans include improving the
ability to run tests from the graphical user interface, as well as adding support
for more data sources and low-level test tools. This development is guided by
feedback from the online community as well as our own needs when running
experiments.

References
[1] N. Cardwell et al., “BBR: congestion-based congestion control,” Commu-

nications of the ACM, vol. 60, no. 2, pp. 58–66, 2017.

[2] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET simulation stud-
ies: The incredibles,” ACM SIGMOBILE Mobile Computing and Commu-
nications Review, vol. 9, no. 4, pp. 50–61, Oct. 2005.

[3] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, Jul. 2012.

[4] R. Pan et al., “PIE: A lightweight control scheme to address the buf-
ferbloat problem,” in 2013 IEEE 14th International Conference on High
Performance Switching and Routing (HPSR), July 2013, pp. 148–155.

[5] T. Høiland-Jørgensen et al., “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
RFC Editor, Jan. 2018.

[6] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “The Good, the
Bad and the WiFi: Modern AQMs in a residential setting,” Computer
Networks, vol. 89, pp. 90–106, Oct. 2015.

[7] D. Taht, “RFC: Realtime Response Under Load (rrul) test specification,”
Nov 2012. https://www.bufferbloat.net/projects/bloat/wiki/RRUL_
Spec/

[8] K. Winstein, “Transport architectures for an evolving internet,” Ph.D.
dissertation, Massachusetts Institute of Technology, Jun. 2014. https:
//cs.stanford.edu/~keithw/www/Winstein-PhD-Thesis.pdf

[9] S. Zander and G. Armitage, “TEACUP v0.8 – a system for automated
TCP testbed experiments,” CAIA, Swinburne Univ. of Tech, Tech. Rep.
150210A, February 2015.

https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/
https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/
https://cs.stanford.edu/~keithw/www/Winstein-PhD-Thesis.pdf
https://cs.stanford.edu/~keithw/www/Winstein-PhD-Thesis.pdf

Flent 229

[10] L. Brakmo, “Netesto, a network testing toolkit,” in NetDev 2.1 - The
Technical Conference on Linux networking, apr 2017. https://netdevconf.
org/2.1/session.html?brakmo

[11] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation of real-
istic network workload for emerging networking scenarios,” Computer
Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[12] M. Casoni, C. A. Grazia, and P. Valente, “Tempest: a new test en-
vironment for performance evaluation of the scheduling of packets,”
Simulation Modelling Practice and Theory, vol. 49, 2014.

[13] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 12–20, March 2010.

[14] S. Hemminger, “netem,” 2017. https://wiki.linuxfoundation.org/
networking/netem

[15] L. Peterson et al., “Experiences building planetlab,” in Proceedings of the
7th symposium onOperating systems design and implementation. USENIX
Association, 2006, pp. 351–366.

[16] E. Eide, L. Stoller, and J. Lepreau, “An experimentation workbench for
replayable networking research,” in Proceedings of the Fourth USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’07),
2007.

[17] V. Bajpai et al., “Global Measurements: Practice and Experience (Dag-
stuhl Seminar 16012),” Dagstuhl Reports, vol. 6, no. 1, pp. 15–33, 2016.

[18] V. Bajpai and J. Schönwälder, “A survey on internet performance meas-
urement platforms and related standardization efforts,” IEEE Communic-
ations Surveys & Tutorials, vol. 17, no. 3, pp. 1313–1341, 2015.

https://netdevconf.org/2.1/session.html?brakmo
https://netdevconf.org/2.1/session.html?brakmo
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem

DOCTORAL THESIS

Karlstad University Studies, 2018:42

ISBN 978-91-7063-878-7 (Print)

ISBN 978-91-7063-973-9 (pdf)

The topic of this thesis is the performance of computer networks in

general, and the internet in particular. While network performance

has generally improved with time, over the last several years we have

seen examples of performance barriers limiting network performance.

In this work we explore such performance barriers and look for solutions.

Our exploration takes us through three areas where performance barriers

are found: The bufferbloat phenomenon of excessive queueing latency, the

performance anomaly in WiFi networks and related airtime resource sharing

problems, and the problem of implementing high-speed programmable

packet processing in an operating system. In each of these areas we present

solutions that significantly advance the state of the art.

The work in this thesis spans all three aspects of the field of computing,
namely mathematics, engineering and science. We perform mathematical

analysis of algorithms, engineer solutions to the problems we explore,

and perform scientific studies of the network itself. All our solutions are
implemented as open source software, including both contributions to the

upstream Linux kernel, as well as the Flent test tool, developed to support

the measurements performed in the rest of the thesis.

